Suppr超能文献

培养细胞中口蹄疫病毒内化事件的分析

Analysis of foot-and-mouth disease virus internalization events in cultured cells.

作者信息

O'Donnell Vivian, LaRocco Michael, Duque Hernando, Baxt Barry

机构信息

Department of Pathobiology and Veterinary Science, University of Connecticut at Storrs, 06269, USA.

出版信息

J Virol. 2005 Jul;79(13):8506-18. doi: 10.1128/JVI.79.13.8506-8518.2005.

Abstract

It has been demonstrated that foot-and-mouth disease virus (FMDV) can utilize at least four members of the alpha(V) subgroup of the integrin family of receptors in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid amino acid sequence motif located within the betaG-betaH loop of VP1. While there have been extensive studies of virus-receptor interactions at the cell surface, our understanding of the events during viral entry into the infected cell is still not clear. We have utilized confocal microscopy to analyze the entry of two FMDV serotypes (types A and O) after interaction with integrin receptors at the cell surface. In cell cultures expressing both the alphaVbeta3 and alphaVbeta6 integrins, virus adsorbed to the cells at 4 degrees C appears to colocalize almost exclusively with the alphaVbeta6 integrin. Upon shifting the infected cells to 37 degrees C, FMDV capsid proteins were detected within 15 min after the temperature shift, in association with the integrin in vesicular structures that were positive for a marker of clathrin-mediated endocytosis. In contrast, virus did not colocalize with a marker for caveola-mediated endocytosis. Virus remained associated with the integrin until about 1 h after the temperature shift, when viral proteins appeared around the perinuclear region of the cell. By 15 min after the temperature shift, viral proteins were seen colocalizing with a marker for early endosomes, while no colocalization with late endosomal markers was observed. In the presence of monensin, which raises the pH of endocytic vesicles and has been shown to inhibit FMDV replication, viral proteins were not released from the recycling endosome structures. Viral proteins were not observed associated with the endoplasmic reticulum or the Golgi. These data indicate that FMDV utilizes the clathrin-mediated endocytosis pathway to infect the cells and that viral replication begins due to acidification of endocytic vesicles, causing the breakdown of the viral capsid structure and release of the genome by an as-yet-unidentified mechanism.

摘要

已经证明口蹄疫病毒(FMDV)在体外可利用整联蛋白受体家族α(V)亚组的至少四个成员。该病毒通过位于VP1的βG-βH环内的高度保守的精氨酸-甘氨酸-天冬氨酸氨基酸序列基序与这些受体相互作用。虽然已经对细胞表面的病毒-受体相互作用进行了广泛研究,但我们对病毒进入受感染细胞过程中发生的事件仍不清楚。我们利用共聚焦显微镜分析了两种FMDV血清型(A 型和 O 型)在细胞表面与整联蛋白受体相互作用后的进入情况。在同时表达αVβ3和αVβ6整联蛋白的细胞培养物中,4℃吸附到细胞上的病毒似乎几乎完全与αVβ6整联蛋白共定位。将感染细胞转移到37℃后,在温度转移后15分钟内检测到FMDV衣壳蛋白,其与网格蛋白介导的内吞作用标记物呈阳性的囊泡结构中的整联蛋白相关。相比之下,病毒与小窝介导的内吞作用标记物不共定位。病毒在温度转移后约1小时内一直与整联蛋白结合,此时病毒蛋白出现在细胞的核周区域周围。温度转移后15分钟,可见病毒蛋白与早期内体标记物共定位,而未观察到与晚期内体标记物的共定位。在莫能菌素存在下,莫能菌素可提高内吞囊泡的pH值并已证明可抑制FMDV复制,病毒蛋白未从再循环内体结构中释放。未观察到病毒蛋白与内质网或高尔基体相关。这些数据表明FMDV利用网格蛋白介导的内吞作用途径感染细胞,并且病毒复制由于内吞囊泡的酸化而开始,导致病毒衣壳结构的破坏并通过一种尚未确定的机制释放基因组。

相似文献

1
Analysis of foot-and-mouth disease virus internalization events in cultured cells.
J Virol. 2005 Jul;79(13):8506-18. doi: 10.1128/JVI.79.13.8506-8518.2005.
2
Analysis of foot-and-mouth disease virus integrin receptor expression in tissues from naïve and infected cattle.
J Comp Pathol. 2009 Aug-Oct;141(2-3):98-112. doi: 10.1016/j.jcpa.2008.09.008. Epub 2009 Jun 9.
3
Interactions of foot-and-mouth disease virus with soluble bovine alphaVbeta3 and alphaVbeta6 integrins.
J Virol. 2004 Sep;78(18):9773-81. doi: 10.1128/JVI.78.18.9773-9781.2004.
4
Cellular receptors for foot and mouth disease virus.
Intervirology. 2009;52(4):201-12. doi: 10.1159/000226121. Epub 2009 Jun 24.
8
Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis.
J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9.
9
Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus.
J Virol. 2005 Jul;79(13):8519-34. doi: 10.1128/JVI.79.13.8519-8534.2005.

引用本文的文献

1
CD44 mediates the internalization of foot-and-mouth disease virus through macropinocytosis.
Vet Res. 2025 Jun 21;56(1):123. doi: 10.1186/s13567-025-01555-3.
3
VP2 mediates the release of the feline calicivirus RNA genome by puncturing the endosome membrane of infected cells.
J Virol. 2024 May 14;98(5):e0035024. doi: 10.1128/jvi.00350-24. Epub 2024 Apr 9.
5
The rescue and selection of thermally stable type O vaccine candidate strains of foot-and-mouth disease virus.
Arch Virol. 2021 Aug;166(8):2131-2140. doi: 10.1007/s00705-021-05100-3. Epub 2021 May 18.
6
Caveolin-1 is involved in encephalomyocarditis virus replication in BHK-21 cells.
Virol J. 2021 Mar 24;18(1):63. doi: 10.1186/s12985-021-01521-3.
8
Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines.
Appl Microbiol Biotechnol. 2020 Feb;104(4):1683-1694. doi: 10.1007/s00253-019-10280-9. Epub 2020 Jan 3.
9
Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21.
Antibodies (Basel). 2016 Nov 2;5(4):21. doi: 10.3390/antib5040021.

本文引用的文献

2
Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events.
Mol Biol Cell. 2004 Nov;15(11):4911-25. doi: 10.1091/mbc.e04-01-0070. Epub 2004 Sep 8.
3
Interactions of foot-and-mouth disease virus with soluble bovine alphaVbeta3 and alphaVbeta6 integrins.
J Virol. 2004 Sep;78(18):9773-81. doi: 10.1128/JVI.78.18.9773-9781.2004.
4
Lipid-raft-dependent Coxsackievirus B4 internalization and rapid targeting to the Golgi.
Virology. 2004 Aug 15;326(1):6-19. doi: 10.1016/j.virol.2004.04.051.
5
PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions.
EMBO J. 2004 Jul 7;23(13):2531-43. doi: 10.1038/sj.emboj.7600267. Epub 2004 Jun 10.
6
Foot-and-mouth disease.
Clin Microbiol Rev. 2004 Apr;17(2):465-93. doi: 10.1128/CMR.17.2.465-493.2004.
8
How viruses enter animal cells.
Science. 2004 Apr 9;304(5668):237-42. doi: 10.1126/science.1094823.
9
Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle.
Virology. 2003 Dec 5;317(1):128-35. doi: 10.1016/j.virol.2003.08.036.
10
Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry.
J Virol. 2004 Jan;78(1):33-41. doi: 10.1128/jvi.78.1.33-41.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验