Charbonnier Yvan, Gettler Brian, François Patrice, Bento Manuela, Renzoni Adriana, Vaudaux Pierre, Schlegel Werner, Schrenzel Jacques
Genomic Research Laboratory, University Hospitals of Geneva, rue Micheli-du-Crest 24, CH-1211 Geneva 14, Switzerland.
BMC Genomics. 2005 Jun 17;6:95. doi: 10.1186/1471-2164-6-95.
DNA microarray technology is widely used to determine the expression levels of thousands of genes in a single experiment, for a broad range of organisms. Optimal design of immobilized nucleic acids has a direct impact on the reliability of microarray results. However, despite small genome size and complexity, prokaryotic organisms are not frequently studied to validate selected bioinformatics approaches. Relying on parameters shown to affect the hybridization of nucleic acids, we designed freely available software and validated experimentally its performance on the bacterial pathogen Staphylococcus aureus.
We describe an efficient procedure for selecting 40-60 mer oligonucleotide probes combining optimal thermodynamic properties with high target specificity, suitable for genomic studies of microbial species. The algorithm for filtering probes from extensive oligonucleotides libraries fitting standard thermodynamic criteria includes positional information of predicted target-probe binding regions. This algorithm efficiently selected probes recognizing homologous gene targets across three different sequenced genomes of Staphylococcus aureus. BLAST analysis of the final selection of 5,427 probes yielded >97%, 93%, and 81% of Staphylococcus aureus genome coverage in strains N315, Mu50, and COL, respectively. A manufactured oligoarray including a subset of control Escherichia coli probes was validated for applications in the fields of comparative genomics and molecular epidemiology, mapping of deletion mutations and transcription profiling.
This generic chip-design process merging sequence information from several related genomes improves genome coverage even in conserved regions.
DNA微阵列技术被广泛用于在单个实验中测定多种生物体中成千上万基因的表达水平。固定化核酸的优化设计对微阵列结果的可靠性有直接影响。然而,尽管原核生物基因组规模小且复杂度低,但对其进行研究以验证所选生物信息学方法的情况并不常见。基于已证明会影响核酸杂交的参数,我们设计了一款免费软件,并通过实验验证了其在细菌病原体金黄色葡萄球菌上的性能。
我们描述了一种高效的程序,用于选择40 - 60聚体寡核苷酸探针,该探针兼具最佳热力学性质和高靶标特异性,适用于微生物物种的基因组研究。从符合标准热力学标准的大量寡核苷酸文库中筛选探针的算法包含预测靶标 - 探针结合区域的位置信息。该算法有效地选择了能识别金黄色葡萄球菌三个不同测序基因组中同源基因靶标的探针。对最终选出的5427个探针进行的BLAST分析显示,在菌株N315、Mu50和COL中,分别覆盖了金黄色葡萄球菌基因组的>97%、93%和81%。包含一部分对照大肠杆菌探针的定制寡核苷酸微阵列在比较基因组学和分子流行病学、缺失突变图谱绘制以及转录谱分析等领域的应用中得到了验证。
这种融合了几个相关基因组序列信息的通用芯片设计流程,即使在保守区域也能提高基因组覆盖率。