Suppr超能文献

芬顿化学中自由基与非自由基途径对云中铁氧化还原循环的影响。

Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds.

作者信息

Deguillaume Laurent, Leriche Maud, Chaumerliac Nadine

机构信息

Laboratoire de Météorologie Physique, Centre National de la Recherche Scientifique, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France.

出版信息

Chemosphere. 2005 Jul;60(5):718-24. doi: 10.1016/j.chemosphere.2005.03.052. Epub 2005 Apr 26.

Abstract

Modeling studies have shown that the Fenton reaction of iron(II) with H2O2 can contribute, in a significant amount, to OH radicals production in cloud droplets. However, the destruction mechanism of hydrogen peroxide by iron(II) is still uncertain. Two reaction pathways for the first step of Fenton chemistry have been advanced: a radical pathway which considers an OH radical production and a non-radical pathway considering ferryl ion production. The aim of this work is to evaluate the impact of these two possible reaction pathways for Fenton chemistry on the iron redox cycle in cloud droplets. For this purpose, the numerical model of multiphase chemistry M2C2 has been applied to a rural chemical scenario representative of continental conditions. This study highlights that the iron redox cycling is driven by Fenton reaction whatever Fenton mechanism is considered. The ferryl ion chemistry becomes significant in the iron redox cycling when this species is considered as an active intermediate in Fenton chemistry and under night time conditions the iron redox chemistry is controlled by the ferryl ion reactivity. The partitioning of iron between its two main oxidation states (+II and +III) in cloud droplets, which is the indicator of the iron oxido-reduction potential, does not change significantly between the two cases. However, for the non-radical case, the ferryl ion concentration is up to four orders of magnitude higher than the OH concentration highlighting its potential role in oxidative capacity of cloud droplets.

摘要

模拟研究表明,铁(II)与过氧化氢的芬顿反应在云滴中能大量促成羟基自由基的产生。然而,铁(II)对过氧化氢的破坏机制仍不明确。芬顿化学第一步的两种反应途径已被提出:一种是考虑产生羟基自由基的自由基途径,另一种是考虑产生高铁离子的非自由基途径。这项工作的目的是评估芬顿化学这两种可能的反应途径对云滴中铁氧化还原循环的影响。为此,多相化学数值模型M2C2已应用于代表大陆条件的农村化学情景。这项研究突出表明,无论考虑哪种芬顿机制,铁氧化还原循环都是由芬顿反应驱动的。当高铁离子被视为芬顿化学中的活性中间体时,高铁离子化学在铁氧化还原循环中变得显著,并且在夜间条件下,铁氧化还原化学由高铁离子反应性控制。在这两种情况下,云滴中处于其两种主要氧化态(+II和+III)的铁的分配情况,即铁氧化还原电位的指标,没有显著变化。然而,对于非自由基情况,高铁离子浓度比羟基浓度高出多达四个数量级,突出了其在云滴氧化能力中的潜在作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验