Suppr超能文献

p53 蛋白 C 末端翻译后修饰在调节 p53 稳定性和活性中的作用的功能分析

Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity.

作者信息

Feng Lijin, Lin Tongxiang, Uranishi Hiroaki, Gu Wei, Xu Yang

机构信息

Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA.

出版信息

Mol Cell Biol. 2005 Jul;25(13):5389-95. doi: 10.1128/MCB.25.13.5389-5395.2005.

Abstract

Posttranslational modification of the tumor suppressor p53 plays important roles in regulating its stability and activity. Six lysine residues at the p53 C terminus can be posttranslationally modified by various mechanisms, including acetylation, ubiquitination, neddylation, methylation, and sumoylation. Previous cell line transfection studies show that ubiquitination of these lysine residues is required for ubiquitin-dependent degradation of p53. In addition, biochemical and cell line studies suggested that p53 acetylation at the C terminus might stabilize p53 and activate its transcriptional activities. To investigate the physiological functional outcome of these C-terminal modifications in regulating p53 stability and activity, we introduced missense mutations (lysine to arginine) at the six lysine residues (K6R) into the endogenous p53 gene in mouse embryonic stem (ES) cells. The K6R mutation prevents all posttranslational modifications at these sites but conserves the structure of p53. In contrast to conclusions of previous studies, analysis of p53 stability in K6R ES cells, mouse embryonic fibroblasts, and thymocytes showed normal p53 stabilization in K6R cells both before and after DNA damage, indicating that ubiquitination of these lysine residues is not required for efficient p53 degradation. However, p53-dependent gene expression was impaired in K6R ES cells and thymocytes in a promoter-specific manner after DNA damage, indicating that the net outcome of the posttranslational modifications at the C terminus is to activate p53 transcriptional activities after DNA damage.

摘要

肿瘤抑制因子p53的翻译后修饰在调节其稳定性和活性方面发挥着重要作用。p53 C末端的六个赖氨酸残基可通过多种机制进行翻译后修饰,包括乙酰化、泛素化、类泛素化、甲基化和小泛素样修饰。先前的细胞系转染研究表明,这些赖氨酸残基的泛素化是p53依赖泛素降解所必需的。此外,生化和细胞系研究表明,C末端的p53乙酰化可能会稳定p53并激活其转录活性。为了研究这些C末端修饰在调节p53稳定性和活性方面的生理功能结果,我们将六个赖氨酸残基(K6R)的错义突变(赖氨酸突变为精氨酸)引入小鼠胚胎干细胞(ES)的内源性p53基因中。K6R突变可阻止这些位点的所有翻译后修饰,但保留p53的结构。与先前研究的结论相反,对K6R ES细胞、小鼠胚胎成纤维细胞和胸腺细胞中p53稳定性的分析表明,在DNA损伤前后,K6R细胞中的p53稳定性正常,这表明这些赖氨酸残基的泛素化并非有效降解p53所必需的。然而,DNA损伤后,K6R ES细胞和胸腺细胞中p53依赖性基因表达以启动子特异性方式受损,这表明C末端翻译后修饰的最终结果是在DNA损伤后激活p53转录活性。

相似文献

4
p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage.
EMBO J. 2000 Sep 15;19(18):4967-75. doi: 10.1093/emboj/19.18.4967.
5
Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate.
J Cell Biol. 2006 May 22;173(4):533-44. doi: 10.1083/jcb.200512059.
6
The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10188-93. doi: 10.1073/pnas.0503068102. Epub 2005 Jul 8.
7
Functional analysis of the acetylation of human p53 in DNA damage responses.
Protein Cell. 2014 Jul;5(7):544-51. doi: 10.1007/s13238-014-0048-x. Epub 2014 Apr 2.
8
Methylation-acetylation interplay activates p53 in response to DNA damage.
Mol Cell Biol. 2007 Oct;27(19):6756-69. doi: 10.1128/MCB.00460-07. Epub 2007 Jul 23.
9
SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.
Biochim Biophys Acta. 2012 Dec;1823(12):2287-96. doi: 10.1016/j.bbamcr.2012.09.011. Epub 2012 Oct 6.
10
C-terminus of p53 is required for G(2) arrest.
Oncogene. 2002 Mar 27;21(13):2102-7. doi: 10.1038/sj.onc.1205251.

引用本文的文献

2
Understanding the complexity of p53 in a new era of tumor suppression.
Cancer Cell. 2024 Jun 10;42(6):946-967. doi: 10.1016/j.ccell.2024.04.009. Epub 2024 May 9.
3
Oxidative stress impairs the Nur77-Sirt1 axis resulting in a decline in organism homeostasis during aging.
Aging Cell. 2023 May;22(5):e13812. doi: 10.1111/acel.13812. Epub 2023 Mar 7.
4
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets.
Cancers (Basel). 2022 Jun 27;14(13):3145. doi: 10.3390/cancers14133145.
5
Association of p53 with Neurodegeneration in Parkinson's Disease.
Parkinsons Dis. 2022 May 11;2022:6600944. doi: 10.1155/2022/6600944. eCollection 2022.
6
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression.
Oncogene. 2022 May;41(22):3039-3050. doi: 10.1038/s41388-022-02331-9. Epub 2022 Apr 29.
7
Protein post-translational modifications in the regulation of cancer hallmarks.
Cancer Gene Ther. 2023 Apr;30(4):529-547. doi: 10.1038/s41417-022-00464-3. Epub 2022 Apr 7.
10
p53 activation vs. stabilization: an acetylation tale from the C-terminal tail.
Oncoscience. 2021 May 7;8:58-60. doi: 10.18632/oncoscience.534. eCollection 2021.

本文引用的文献

1
Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors.
Cell. 2005 Feb 25;120(4):513-22. doi: 10.1016/j.cell.2005.02.003.
2
p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression.
Nat Cell Biol. 2005 Feb;7(2):165-71. doi: 10.1038/ncb1211. Epub 2004 Dec 26.
3
Regulation of p53 activity through lysine methylation.
Nature. 2004 Nov 18;432(7015):353-60. doi: 10.1038/nature03117. Epub 2004 Nov 3.
4
p53 linear diffusion along DNA requires its C terminus.
Mol Cell. 2004 Nov 5;16(3):413-24. doi: 10.1016/j.molcel.2004.09.032.
5
The p53 response to DNA damage.
DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1049-56. doi: 10.1016/j.dnarep.2004.03.027.
6
Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity.
Cell. 2004 Jul 9;118(1):83-97. doi: 10.1016/j.cell.2004.06.016.
7
The ubiquitin ligase COP1 is a critical negative regulator of p53.
Nature. 2004 May 6;429(6987):86-92. doi: 10.1038/nature02514. Epub 2004 Apr 21.
8
Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo.
Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2259-64. doi: 10.1073/pnas.0308762101.
9
Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses.
J Biol Chem. 2003 Oct 17;278(42):41028-33. doi: 10.1074/jbc.M306938200. Epub 2003 Aug 8.
10
Regulation of p53 responses by post-translational modifications.
Cell Death Differ. 2003 Apr;10(4):400-3. doi: 10.1038/sj.cdd.4401182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验