Singh Chingakham Ranjit, Curtis Cynthia, Yamamoto Yasufumi, Hall Nathan S, Kruse Dustin S, He Hui, Hannig Ernest M, Asano Katsura
Program for Molecular Cellular and Developmental Biology, Division of Biology, 258 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA.
Mol Cell Biol. 2005 Jul;25(13):5480-91. doi: 10.1128/MCB.25.13.5480-5491.2005.
The integrity of eukaryotic translation initiation factor (eIF) interactions in ribosomal pre-initiation complexes is critical for the proper regulation of GCN4 mRNA translation in response to amino acid availability. Increased phosphorylation of eIF2 under amino acid starvation conditions leads to a corresponding increase in GCN4 mRNA translation. The carboxyl-terminal domain (CTD) of eIF5 (eIF5-CTD) has been identified as a potential nucleation site for pre-initiation complex assembly. To further characterize eIF5 and delineate its role in GCN4 translational control, we isolated mutations leading to temperature sensitivity (Ts- phenotype) targeted at TIF5, the structural gene encoding eIF5 in yeast (Saccharomyces cerevisiae). Nine single point mutations were isolated, in addition to an allele in which the last 15 amino acids were deleted. The nine point mutations clustered in the eIF5-CTD, which contains two conserved aromatic/acidic boxes. Six of the point mutations derepressed GCN4 translation independent of eIF2 phosphorylation (Gcd- phenotype) at a permissive temperature, directly implicating eIF5-CTD in the eIF2/GTP/Met-tRNA(i)Met ternary complex binding process required for GCN4 translational control. In addition, stronger restriction of eIF5-CTD function at an elevated temperature led to failure to derepress GCN4 translation (Gcn- phenotype) in all of the mutants, most likely due to leaky scanning of the first upstream open reading frame of GCN4 mRNA. This latter result directly implicates eIF5-CTD in the process of accurate scanning for, or recognition of, AUG codons. Taken together, our results indicate that eIF5-CTD plays a critical role in both the assembly of the 43S complex and the post-assembly process in the 48S complex, likely during the scanning process.
核糖体起始前复合物中真核生物翻译起始因子(eIF)相互作用的完整性对于响应氨基酸可用性而对GCN4 mRNA翻译进行适当调控至关重要。在氨基酸饥饿条件下,eIF2磷酸化增加会导致GCN4 mRNA翻译相应增加。eIF5的羧基末端结构域(CTD)已被确定为起始前复合物组装的潜在成核位点。为了进一步表征eIF5并阐明其在GCN4翻译控制中的作用,我们分离了导致温度敏感性(Ts-表型)的突变,这些突变靶向酵母(酿酒酵母)中编码eIF5的结构基因TIF5。除了一个缺失最后15个氨基酸的等位基因外,还分离出了9个单点突变。这9个点突变聚集在eIF5-CTD中,该区域包含两个保守的芳香族/酸性框。其中6个点突变在允许温度下不依赖于eIF2磷酸化(Gcd-表型)而解除对GCN4翻译的抑制,这直接表明eIF5-CTD参与了GCN4翻译控制所需的eIF2/GTP/Met-tRNA(i)Met三元复合物结合过程。此外,在高温下对eIF5-CTD功能的更强限制导致所有突变体均未能解除对GCN4翻译的抑制(Gcn-表型),这很可能是由于对GCN4 mRNA第一个上游开放阅读框的漏扫描所致。后一个结果直接表明eIF5-CTD参与了对AUG密码子的精确扫描或识别过程。综上所述,我们的结果表明eIF5-CTD在43S复合物的组装以及48S复合物的组装后过程中都起着关键作用,可能是在扫描过程中。