Das Arabinda, Sribnick Eric A, Wingrave James M, Del Re Angelo M, Woodward John J, Appel Stanley H, Banik Naren L, Ray Swapan K
Department of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
J Neurosci Res. 2005 Aug 15;81(4):551-62. doi: 10.1002/jnr.20581.
Glutamate toxicity has been implicated in cell death in neurodegenerative diseases and injuries. Glutamate-induced Ca2+ influx may mediate activation of calpain, a Ca2+-dependent cysteine protease, which in turn may degrade key cytoskeletal proteins. We investigated glutamate-mediated apoptosis of VSC4.1 motoneurons and functional neuroprotection by calpain inhibition. Exposure of VSC4.1 cells to 10 microM glutamate for 24 hr caused significant increases in intracellular free [Ca2+], as determined by fura-2 assay. Pretreatment of cells with 10 or 25 microM calpeptin (a cell-permeable calpain-specific inhibitor) for 1 hr prevented glutamate-induced Ca2+ influx. Western blot analyses showed an increase in Bax:Bcl-2 ratio, release of cytochrome c from mitochondria, and calpain and caspase-3 activities during apoptosis. Cell morphology, as evaluated by Wright staining, indicated predominantly apoptotic features following glutamate exposure. ApopTag assay further substantiated apoptotic features morphologically as well as biochemically. Our data showed that calpeptin mainly prevented calpain-mediated proteolysis and apoptosis and maintained whole-cell membrane potential, indicating functional neuroprotection. The results imply that calpeptin may serve as a therapeutic agent for preventing motoneuron degeneration, which occurs in amyotrophic lateral sclerosis and spinal cord injury. In this investigation, we also examined glutamate receptor subtypes involved in the initiation of apoptosis in VSC4.1 cells following exposure to glutamate. Our results indicated that the N-methyl-D-aspartate (NMDA) receptors contributed more than alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors to glutamate-mediated Ca2+ influx and cell death mechanism. Inhibition of the activities of both NMDA and AMPA receptors protected VSC4.1 cells from glutamate toxicity and preserved whole-cell membrane potential.
谷氨酸毒性与神经退行性疾病和损伤中的细胞死亡有关。谷氨酸诱导的Ca2+内流可能介导钙蛋白酶的激活,钙蛋白酶是一种依赖Ca2+的半胱氨酸蛋白酶,进而可能降解关键的细胞骨架蛋白。我们研究了谷氨酸介导的VSC4.1运动神经元凋亡以及钙蛋白酶抑制的功能性神经保护作用。通过fura-2检测法测定,将VSC4.1细胞暴露于10微摩尔谷氨酸中24小时会导致细胞内游离[Ca2+]显著增加。用10或25微摩尔的钙蛋白酶抑制剂(一种可透过细胞的钙蛋白酶特异性抑制剂)预处理细胞1小时可防止谷氨酸诱导的Ca2+内流。蛋白质免疫印迹分析显示,凋亡过程中Bax:Bcl-2比值增加、细胞色素c从线粒体释放以及钙蛋白酶和半胱天冬酶-3活性增强。通过瑞氏染色评估细胞形态,结果表明谷氨酸暴露后主要呈现凋亡特征。ApopTag检测进一步从形态学和生物化学方面证实了凋亡特征。我们的数据表明,钙蛋白酶抑制剂主要防止钙蛋白酶介导的蛋白水解和凋亡,并维持全细胞膜电位,表明具有功能性神经保护作用。结果表明,钙蛋白酶抑制剂可能作为一种治疗剂来预防运动神经元变性,这种变性发生在肌萎缩侧索硬化症和脊髓损伤中。在本研究中,我们还检测了参与VSC4.1细胞暴露于谷氨酸后凋亡起始的谷氨酸受体亚型。我们的结果表明,N-甲基-D-天冬氨酸(NMDA)受体对谷氨酸介导的Ca2+内流和细胞死亡机制的贡献大于α-氨基-3-羟基-5-甲基-异恶唑-4-丙酸(AMPA)受体。抑制NMDA和AMPA受体的活性可保护VSC4.1细胞免受谷氨酸毒性影响,并维持全细胞膜电位。