Sluis-Cremer Nicolas, Arion Dominique, Parikh Urvi, Koontz Dianna, Schinazi Raymond F, Mellors John W, Parniak Michael A
University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15261, USA.
J Biol Chem. 2005 Aug 12;280(32):29047-52. doi: 10.1074/jbc.M503166200. Epub 2005 Jun 20.
The mechanism of human immunodeficiency virus (HIV) 1 resistance to 3'-azido-3'-deoxythymidine (AZT) involves reverse transcriptase (RT)-catalyzed phosphorolytic excision of the chain-terminating AZT-5'-monophosphate (AZTMP). Primers terminated with AZTMP are generally better substrates for this reaction than those terminated with 2',3'-dideoxynucleoside-5'-monophosphate (2',3'-ddNMP) analogs that lack a 3'-azido moiety. This led to the hypothesis that the 3'-azido group is a major structural determinant for maintaining the primer terminus in the appropriate site for phosphorolytic excision of AZTMP by AZT-resistant (AZT(R)) RT. To test this hypothesis, we evaluated the incorporation, phosphorolytic excision, and antiviral activity of a panel of 3'-azido-2',3'-ddN including 3'-azido-2',3'-ddA (AZddA), 3'-azido-2',3'-ddC (AZddC), 3'-azido-2',3'-ddG (AZddG), AZT, and 3'-azido-2',3'-ddU (AZddU). The results indicate that mutations correlated with resistance to AZT (D67N/K70R/T215F/K219Q) confer resistance to the 3'-azidopyrimidine nucleosides (AZddC, AZT, and AZddU) but not to the 3'-azidopurine nucleosides (AZddA and AZddG). The data suggest that the presence of a 3'-azido group on the 3'-terminal nucleotide of the primer does not confer increased phosphorolytic excision by AZT(R) RT for all 3'-azido-ddNMP analogs. Thus, the 3'-azido group cannot be the only structural determinant important for the enhanced phosphorolytic excision of AZTMP associated with HIV resistance to AZT. Other structural components, such as the base, must play a role in defining the specificity of the excision phenotype arising from AZT resistance mutations.
人类免疫缺陷病毒(HIV)1对3'-叠氮-3'-脱氧胸苷(AZT)产生耐药性的机制涉及逆转录酶(RT)催化的链终止性AZT-5'-单磷酸(AZTMP)的磷酸解切除反应。与缺乏3'-叠氮基团的2',3'-双脱氧核苷-5'-单磷酸(2',3'-ddNMP)类似物相比,以AZTMP结尾的引物通常是该反应更好的底物。这导致了一种假设,即3'-叠氮基团是通过耐AZT(AZT(R))RT将引物末端维持在适当位置以进行AZTMP磷酸解切除的主要结构决定因素。为了验证这一假设,我们评估了一组3'-叠氮-2',3'-ddN的掺入、磷酸解切除及抗病毒活性,这些包括3'-叠氮-2',3'-ddA(AZddA)、3'-叠氮-2',3'-ddC(AZddC)、3'-叠氮-2',3'-ddG(AZddddG)、AZT和3'-叠氮-2',3'-ddU(AZddU)。结果表明,与对AZT耐药相关的突变(D67N/K70R/T215F/K219Q)赋予了对3'-叠氮嘧啶核苷(AZddC、AZT和AZddU)的耐药性,但对3'-叠氮嘌呤核苷(AZddA和AZddG)没有耐药性。数据表明,引物3'-末端核苷酸上存在3'-叠氮基团并不会使所有3'-叠氮-ddNMP类似物通过AZT(R) RT增加磷酸解切除。因此,3'-叠氮基团不可能是与HIV对AZT耐药相关的AZTMP增强磷酸解切除的唯一重要结构决定因素。其他结构成分,如碱基,必定在定义由AZT耐药突变产生的切除表型特异性中发挥作用。