Arion D, Kaushik N, McCormick S, Borkow G, Parniak M A
Lady Davis Institute for Medical Research, McGill University AIDS Centre, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
Biochemistry. 1998 Nov 10;37(45):15908-17. doi: 10.1021/bi981200e.
The multiple mutations associated with high-level AZT resistance (D67N, K70R, T215F, K219Q) arise in two separate subdomains of the viral reverse transcriptase (RT), suggesting that these mutations may contribute differently to overall resistance. We compared wild-type RT with the D67N/K70R/T215F/K219Q, D67N/K70R, and T215F/K219Q mutant enzymes. The D67N/K70R/T215F/K219Q mutant showed increased DNA polymerase processivity; this resulted from decreased template/primer dissociation from RT, and was due to the T215F/K219Q mutations. The D67N/K70R/T215F/K219Q mutant was less sensitive to AZTTP (IC50 approximately 300 nM) than wt RT (IC50 approximately 100 nM) in the presence of 0.5 mM pyrophosphate. This change in pyrophosphate-mediated sensitivity of the mutant enzyme was selective for AZTTP, since similar Km values for TTP and inhibition by ddCTP and ddGTP were noted with wt and mutant RT in the absence or in the presence of pyrophosphate. The D67N/K70R/T215F/K219Q mutant showed an increased rate of pyrophosphorolysis (the reverse reaction of DNA synthesis) of chain-terminated DNA; this enhanced pyrophosphorolysis was due to the D67N/K70R mutations. However, the processivity of pyrophosphorolysis was similar for the wild-type and mutant enzymes. We propose that HIV-1 resistance to AZT results from the selectively decreased binding of AZTTP and the increased pyrophosphorolytic cleavage of chain-terminated viral DNA by the mutant RT at physiological pyrophosphate levels, resulting in a net decrease in chain termination. The increased processivity of viral DNA synthesis may be important to enable facile HIV replication in the presence of AZT, by compensating for the increased reverse reaction rate.
与高水平齐多夫定(AZT)耐药相关的多种突变(D67N、K70R、T215F、K219Q)出现在病毒逆转录酶(RT)的两个不同亚结构域中,这表明这些突变对总体耐药性的贡献可能不同。我们将野生型RT与D67N/K70R/T215F/K219Q、D67N/K70R和T215F/K219Q突变酶进行了比较。D67N/K70R/T215F/K219Q突变体显示DNA聚合酶持续合成能力增强;这是由于模板/引物与RT的解离减少所致,并且是由T215F/K219Q突变引起的。在存在0.5 mM焦磷酸的情况下,D67N/K70R/T215F/K219Q突变体对AZTTP的敏感性低于野生型RT(IC50约为300 nM对IC50约为100 nM)。突变酶焦磷酸介导的敏感性变化对AZTTP具有选择性,因为在不存在或存在焦磷酸的情况下,野生型和突变型RT对TTP的Km值相似,并且对ddCTP和ddGTP的抑制作用也相似。D67N/K70R/T215F/K219Q突变体显示链终止DNA的焦磷酸解(DNA合成的逆反应)速率增加;这种增强的焦磷酸解是由D67N/K70R突变引起的。然而,野生型和突变型酶的焦磷酸解持续合成能力相似。我们提出,HIV-1对AZT的耐药性是由于在生理焦磷酸水平下,突变型RT对AZTTP的结合选择性降低以及链终止病毒DNA的焦磷酸解切割增加,导致链终止净减少。病毒DNA合成持续合成能力的增强对于在存在AZT的情况下实现HIV的轻松复制可能很重要,通过补偿增加的逆反应速率。