Suppr超能文献

使用独立成分分析学习多视图人脸子空间和面部姿态估计

Learning multiview face subspaces and facial pose estimation using independent component analysis.

作者信息

Li Stan Z, Lu XiaoGuang, Hou Xinwen, Peng Xianhua, Cheng Qiansheng

机构信息

Microsoft Research Asia, Beijing 100080, China.

出版信息

IEEE Trans Image Process. 2005 Jun;14(6):705-12. doi: 10.1109/tip.2005.847295.

Abstract

An independent component analysis (ICA) based approach is presented for learning view-specific subspace representations of the face object from multiview face examples. ICA, its variants, namely independent subspace analysis (ISA) and topographic independent component analysis (TICA), take into account higher order statistics needed for object view characterization. In contrast, principal component analysis (PCA), which de-correlates the second order moments, can hardly reveal good features for characterizing different views, when the training data comprises a mixture of multiview examples and the learning is done in an unsupervised way with view-unlabeled data. We demonstrate that ICA, TICA, and ISA are able to learn view-specific basis components unsupervisedly from the mixture data. We investigate results learned by ISA in an unsupervised way closely and reveal some surprising findings and thereby explain underlying reasons for the emergent formation of view subspaces. Extensive experimental results are presented.

摘要

提出了一种基于独立成分分析(ICA)的方法,用于从多视图人脸示例中学习人脸对象的视图特定子空间表示。ICA及其变体,即独立子空间分析(ISA)和拓扑独立成分分析(TICA),考虑了对象视图特征化所需的高阶统计量。相比之下,主成分分析(PCA)使二阶矩去相关,当训练数据包含多视图示例的混合,且在无监督方式下对无视图标签的数据进行学习时,几乎无法揭示用于表征不同视图的良好特征。我们证明ICA、TICA和ISA能够从混合数据中无监督地学习视图特定的基成分。我们仔细研究了ISA以无监督方式学习到的结果,揭示了一些惊人的发现,并由此解释了视图子空间出现形成的潜在原因。给出了大量实验结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验