Suppr超能文献

使用光谱直方图和支持向量机进行面部检测。

Face detection using spectral histograms and SVMs.

作者信息

Waring Christopher A, Liu Xiuwen

机构信息

Department of Computer Science, The Florida State University, Tallahassee, FL 32306, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):467-76. doi: 10.1109/tsmcb.2005.846655.

Abstract

We present a face detection method using spectral histograms and support vector machines (SVMs). Each image window is represented by its spectral histogram, which is a feature vector consisting of histograms of filtered images. Using statistical sampling, we show systematically the representation groups face images together; in comparison, commonly used representations often do not exhibit this necessary and desirable property. By using an SVM trained on a set of 4500 face and 8000 nonface images, we obtain a robust classifying function for face and non-face patterns. With an effective illumination-correction algorithm, our system reliably discriminates face and nonface patterns in images under different kinds of conditions. Our method on two commonly used data sets give the best performance among recent face-detection ones. We attribute the high performance to the desirable properties of the spectral histogram representation and good generalization of SVMs. Several further improvements in computation time and in performance are discussed.

摘要

我们提出了一种使用光谱直方图和支持向量机(SVM)的人脸检测方法。每个图像窗口由其光谱直方图表示,光谱直方图是一个由滤波图像的直方图组成的特征向量。通过统计采样,我们系统地展示了该表示法能将人脸图像聚集在一起;相比之下,常用的表示法通常不具备这种必要且理想的特性。通过在一组4500张人脸图像和8000张非人脸图像上训练的支持向量机,我们获得了用于人脸和非人脸模式的强大分类函数。借助有效的光照校正算法,我们的系统能够在不同条件下可靠地辨别图像中的人脸和非人脸模式。我们在两个常用数据集上的方法在近期的人脸检测方法中表现最佳。我们将高性能归因于光谱直方图表示的理想特性以及支持向量机的良好泛化能力。文中还讨论了在计算时间和性能方面的一些进一步改进。

相似文献

1
Face detection using spectral histograms and SVMs.
IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):467-76. doi: 10.1109/tsmcb.2005.846655.
2
Face recognition using face-ARG matching.
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1982-8. doi: 10.1109/TPAMI.2005.243.
3
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):572-81. doi: 10.1109/TPAMI.2004.1273927.
4
Kernel pooled local subspaces for classification.
IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):489-502. doi: 10.1109/tsmcb.2005.846641.
5
Learning from examples in the small sample case: face expression recognition.
IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):477-88. doi: 10.1109/tsmcb.2005.846658.
6
Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor.
IEEE Trans Pattern Anal Mach Intell. 2005 Feb;27(2):278-81. doi: 10.1109/TPAMI.2005.38.
7
Background learning for robust face recognition with PCA in the presence of clutter.
IEEE Trans Image Process. 2005 Jun;14(6):832-43. doi: 10.1109/tip.2005.847288.
8
Convolutional face finder: a neural architecture for fast and robust face detection.
IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1408-23. doi: 10.1109/tpami.2004.97.
9
On the Euclidean distance of images.
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1334-9. doi: 10.1109/TPAMI.2005.165.
10
Face description with local binary patterns: application to face recognition.
IEEE Trans Pattern Anal Mach Intell. 2006 Dec;28(12):2037-41. doi: 10.1109/TPAMI.2006.244.

引用本文的文献

1
Approaches to analyse dynamic microbial communities such as those seen in cystic fibrosis lung.
Hum Genomics. 2009 Apr;3(3):246-56. doi: 10.1186/1479-7364-3-3-246.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验