Garcia Christophe, Delakis Manolis
France Telecom R&D, 4 rue du Clos Courtel, 35512, Cesson Sivigne Cedex, France.
IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1408-23. doi: 10.1109/tpami.2004.97.
In this paper, we present a novel face detection approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns, rotated up to +/-20 degrees in image plane and turned up to +/-60 degrees, in complex real world images. The proposed system automatically synthesizes simple problem-specific feature extractors from a training set of face and nonface patterns, without making any assumptions or using any hand-made design concerning the features to extract or the areas of the face pattern to analyze. The face detection procedure acts like a pipeline of simple convolution and subsampling modules that treat the raw input image as a whole. We therefore show that an efficient face detection system does not require any costly local preprocessing before classification of image areas. The proposed scheme provides very high detection rate with a particularly low level of false positives, demonstrated on difficult test sets, without requiring the use of multiple networks for handling difficult cases. We present extensive experimental results illustrating the efficiency of the proposed approach on difficult test sets and including an in-depth sensitivity analysis with respect to the degrees of variability of the face patterns.
在本文中,我们提出了一种基于卷积神经架构的新型人脸检测方法,旨在稳健地检测复杂真实世界图像中高度可变的人脸模式,这些人脸模式在图像平面中旋转角度可达±20度,在空间中旋转角度可达±60度。所提出的系统从人脸和非人脸模式的训练集中自动合成简单的特定问题特征提取器,而无需对要提取的特征或要分析的人脸模式区域做出任何假设或使用任何手工设计。人脸检测过程就像一个简单卷积和下采样模块的流水线,将原始输入图像作为一个整体进行处理。因此,我们表明,一个高效的人脸检测系统在对图像区域进行分类之前不需要任何昂贵的局部预处理。所提出的方案在困难的测试集上展示出了非常高的检测率和特别低的误报率,无需使用多个网络来处理困难情况。我们展示了广泛的实验结果,说明了所提出方法在困难测试集上的效率,并包括对人脸模式可变程度的深入敏感性分析。