Gençer Nevzat G, Akalin-Acar Zeynep
Department of Electrical and Electronics Engineering, Brain Research Laboratory, Middle East Technical University, 06531 Ankara, Turkey.
Phys Med Biol. 2005 Jul 7;50(13):3007-22. doi: 10.1088/0031-9155/50/13/003. Epub 2005 Jun 8.
The isolated problem approach (IPA) is a method used in the boundary element method (BEM) to overcome numerical inaccuracies caused by the high-conductivity difference in the skull and the brain tissues in the head. Hämäläinen and Sarvas (1989 IEEE Trans. Biomed. Eng. 36 165-71) described how the source terms can be updated to overcome these inaccuracies for a three-layer head model. Meijs et al (1989 IEEE Trans. Biomed. Eng. 36 1038-49) derived the integral equations for the general case where there are an arbitrary number of layers inside the skull. However, the IPA is used in the literature only for three-layer head models. Studies that use complex boundary element head models that investigate the inhomogeneities in the brain or model the cerebrospinal fluid (CSF) do not make use of the IPA. In this study, the generalized formulation of the IPA for multi-layer models is presented in terms of integral equations. The discretized version of these equations are presented in two different forms. In a previous study (Akalin-Acar and Gençer 2004 Phys. Med. Biol. 49 5011-28), we derived formulations to calculate the electroencephalography and magnetoencephalography transfer matrices assuming a single layer in the skull. In this study, the transfer matrix formulations are updated to incorporate the generalized IPA. The effects of the IPA are investigated on the accuracy of spherical and realistic models when the CSF layer and a tumour tissue are included in the model. It is observed that, in the spherical model, for a radial dipole 1 mm close to the brain surface, the relative difference measure (RDM*) drops from 1.88 to 0.03 when IPA is used. For the realistic model, the inclusion of the CSF layer does not change the field pattern significantly. However, the inclusion of an inhomogeneity changes the field pattern by 25% for a dipole oriented towards the inhomogeneity. The effect of the IPA is also investigated when there is an inhomogeneity in the brain. In addition to a considerable change in the scale of the potentials, the field pattern also changes by 15%. The computation times are presented for the multi-layer realistic head model.
孤立问题方法(IPA)是边界元法(BEM)中使用的一种方法,用于克服头部颅骨和脑组织中高电导率差异所导致的数值不准确性。哈迈莱宁和萨尔瓦斯(1989年,《IEEE生物医学工程汇刊》36卷,第165 - 171页)描述了如何更新源项以克服三层头部模型中的这些不准确性。梅伊斯等人(1989年,《IEEE生物医学工程汇刊》36卷,第1038 - 1049页)推导了颅骨内存在任意层数的一般情况下的积分方程。然而,IPA在文献中仅用于三层头部模型。使用复杂边界元头部模型来研究脑内不均匀性或对脑脊液(CSF)进行建模的研究并未使用IPA。在本研究中,以积分方程的形式给出了多层模型的IPA广义公式。这些方程的离散形式以两种不同的形式呈现。在之前的一项研究(阿卡林 - 阿卡尔和根塞尔,2004年,《物理学医学与生物学》49卷,第5011 - 5028页)中,我们推导了假设颅骨为单层时计算脑电图和脑磁图传递矩阵的公式。在本研究中,更新了传递矩阵公式以纳入广义IPA。当模型中包含脑脊液层和肿瘤组织时,研究了IPA对球形模型和真实模型准确性的影响。观察到,在球形模型中,对于靠近脑表面1毫米处的径向偶极子,使用IPA时相对差异度量(RDM*)从1.88降至0.03。对于真实模型,包含脑脊液层不会显著改变场模式。然而,对于朝向不均匀性的偶极子来说,包含不均匀性会使场模式改变25%。当脑内存在不均匀性时,也研究了IPA的影响。除了电位尺度有相当大的变化外,场模式也改变了15%。给出了多层真实头部模型的计算时间。