Hermán Peter, Trübel Hubert K F, Hyder Fahmeed
Magnetic Resonance Research Center, Yale University, New Haven, Connecticut 06510, USA.
J Cereb Blood Flow Metab. 2006 Jan;26(1):79-91. doi: 10.1038/sj.jcbfm.9600165.
A quantitative understanding of unidirectional versus net extraction of oxygen in the brain is required because an important factor in calculating oxidative metabolism by calibrated functional magnetic resonance imaging (fMRI) as well as oxygen inhalation methods of positron emission tomography (15O2-PET) and nuclear magnetic resonance (17O2-NMR)) is the degree of oxygen efflux from the brain back into the blood. Because mechanisms of oxygen transport from blood to brain are dependent on cerebral metabolic rate of oxygen consumption (CMRO2), cerebral blood flow (CBF), and oxygen partial pressure (pO2) values in intravascular (Piv) and extravascular (Pev) compartments, we implemented multimodal measurements of these parameters into a compartmental model of oxygen transport and metabolism (i.e., hemoglobin-bound oxygen, oxygen dissolved in plasma and tissue spaces, oxygen metabolized in the mitochondria). In the alpha-chloralose anesthetized rat brain, we used magnetic resonance (7.0 T) and fluorescence quenching methods to measure CMRO2 (2.5+/-1.0 micromol/g min), CBF (0.7+/-0.2 mL/g min), Piv (74+/-10 mm Hg), and Pev (16+/-5 mm Hg) to estimate the degree of oxygen efflux from the brain. In the axially distributed compartmental model, oxygen molecules in blood had two possible fates: enter the tissue space or remain in the same compartment; while in tissue there were three possible fates: enter the blood or the mitochondrial space, or remain in the same compartment. The multiparametric results indicate that the probability of unmetabolized (i.e., dissolved) oxygen molecules reentering the blood from the tissue is negligible and thus its inclusion may unnecessarily complicate calculations of CMRO2 for 15O-PET, 17O-NMR, and calibrated fMRI methods.
需要对大脑中氧气的单向摄取与净摄取进行定量理解,因为通过校准功能磁共振成像(fMRI)以及正电子发射断层扫描(15O2-PET)和核磁共振(17O2-NMR)的氧气吸入方法来计算氧化代谢的一个重要因素是氧气从大脑回流到血液中的程度。由于氧气从血液输送到大脑的机制取决于脑氧代谢率(CMRO2)、脑血流量(CBF)以及血管内(Piv)和血管外(Pev)隔室中的氧分压(pO2)值,我们将这些参数的多模态测量纳入了氧气输送和代谢的隔室模型(即与血红蛋白结合的氧气、溶解在血浆和组织间隙中的氧气、在线粒体中代谢的氧气)中。在α-氯醛糖麻醉的大鼠大脑中,我们使用磁共振(7.0 T)和荧光猝灭方法来测量CMRO2(2.5±1.0微摩尔/克·分钟)、CBF(0.7±0.2毫升/克·分钟)、Piv(74±10毫米汞柱)和Pev(16±5毫米汞柱),以估计大脑中氧气流出的程度。在轴向分布的隔室模型中,血液中的氧分子有两种可能的命运:进入组织间隙或留在同一隔室;而在组织中有三种可能的命运:进入血液或线粒体间隙,或留在同一隔室。多参数结果表明,未代谢(即溶解)的氧分子从组织重新进入血液的概率可以忽略不计,因此将其纳入可能会不必要地使15O-PET、17O-NMR和校准fMRI方法的CMRO2计算复杂化。