Sakadžić Sava, Yaseen Mohammad A, Jaswal Rajeshwer, Roussakis Emmanuel, Dale Anders M, Buxton Richard B, Vinogradov Sergei A, Boas David A, Devor Anna
Massachusetts General Hospital and Harvard Medical School , Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States.
University of Pennsylvania , Departments of Biochemistry and Biophysics and Chemistry, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States.
Neurophotonics. 2016 Oct;3(4):045005. doi: 10.1117/1.NPh.3.4.045005. Epub 2016 Oct 17.
The cerebral metabolic rate of oxygen ([Formula: see text]) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying [Formula: see text] rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of [Formula: see text] based on a single measurement modality-two-photon imaging of the partial pressure of oxygen ([Formula: see text]) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue [Formula: see text] distribution around cortical penetrating arterioles. [Formula: see text] is subsequently estimated by fitting the changes of tissue [Formula: see text] around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline [Formula: see text] in anesthetized rats and modulated tissue [Formula: see text] levels by manipulating the depth of anesthesia. This method provides [Formula: see text] measurements localized within [Formula: see text] and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation.
脑氧代谢率([公式:见原文])是评估脑功能和病理生理学的一个重要参数。然而,目前用于量化[公式:见原文]的方法依赖于复杂的多模态成像和数学建模。在此,我们介绍一种基于单一测量模态——对皮质组织中氧分压([公式:见原文])进行双光子成像——来估算[公式:见原文]的方法。我们采用双光子磷光寿命显微镜(2PLM)和氧敏感纳米探针PtP - C343来绘制皮质穿通小动脉周围组织[公式:见原文]的分布。随后,通过用氧扩散的克勒氏圆柱模型拟合小动脉周围组织[公式:见原文]的变化来估算[公式:见原文]。我们在麻醉大鼠中测量了基线[公式:见原文],并通过控制麻醉深度来调节组织[公式:见原文]水平。该方法提供了定位在[公式:见原文]内的[公式:见原文]测量值,并且它可能提供单个皮质层或局限于皮质区域(如缺血半暗带和功能激活灶)内的氧消耗测量值。