Shonhai Addmore, Boshoff Aileen, Blatch Gregory L
Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
Mol Genet Genomics. 2005 Aug;274(1):70-8. doi: 10.1007/s00438-005-1150-9. Epub 2005 Jun 23.
Heat shock protein 70 (Hsp 70) and heat shock protein 40 (Hsp 40) are molecular chaperones that ensure that the proteins of the cell are properly folded and functional under both normal and stressful conditions. The malaria parasite Plasmodium falciparum is known to overproduce a heat shock protein 70 (PfHsp 70) in response to thermal stress; however, the in vivo function of this protein still needs to be explored. Using in vivo complementation assays, we found that PfHsp 70 was able to suppress the thermosensitivity of an Escherichia coli dnaK 756 strain, but not that of the corresponding deletion strain (DeltadnaK 52) or dnaK 103 strain, which produces a truncated DnaK. Constructs were generated that encoded the ATPase domain of PfHsp 70 fused to the substrate-binding domain (SBD) of E. coli DnaK (referred to as PfK), and the ATPase domain of E. coli DnaK coupled to the SBD of PfHsp 70 (KPf). PfK was unable to suppress the thermosensitivity of any of the E. coli strains. In contrast, KPf was able to suppress the thermosensitivity in the E. coli dnaK 756 strain. We also identified two key amino acid residues (V 401 and Q 402) in the linker region between the ATPase domain and SBD that are essential for the in vivo function of PfHsp 70. This is the first example of an Hsp70 from a eukaryotic parasite that can suppress thermosensitivity in a prokaryotic system. In addition, our results also suggest that interdomain communication is critical for the function of the PfHsp 70 and PfHsp 70-DnaK chimeras. We discuss the implications of these data for the mechanism of action of the Hsp70-Hsp 40 chaperone machinery.
热休克蛋白70(Hsp 70)和热休克蛋白40(Hsp 40)是分子伴侣,可确保细胞中的蛋白质在正常和应激条件下都能正确折叠并发挥功能。已知疟原虫恶性疟原虫在热应激反应中会过量产生热休克蛋白70(PfHsp 70);然而,这种蛋白质的体内功能仍有待探索。通过体内互补试验,我们发现PfHsp 70能够抑制大肠杆菌dnaK 756菌株的热敏感性,但不能抑制相应缺失菌株(DeltadnaK 52)或产生截短DnaK的dnaK 103菌株的热敏感性。构建了编码与大肠杆菌DnaK的底物结合结构域(SBD)融合的PfHsp 70的ATP酶结构域的构建体(称为PfK),以及与PfHsp 70的SBD偶联的大肠杆菌DnaK的ATP酶结构域(KPf)。PfK无法抑制任何大肠杆菌菌株的热敏感性。相比之下,KPf能够抑制大肠杆菌dnaK 756菌株的热敏感性。我们还在ATP酶结构域和SBD之间的连接区域中鉴定出两个关键氨基酸残基(V 401和Q 402),它们对于PfHsp 70的体内功能至关重要。这是来自真核寄生虫的Hsp70能够在原核系统中抑制热敏感性的首个例子。此外,我们的结果还表明结构域间通讯对于PfHsp 70和PfHsp 70-DnaK嵌合体的功能至关重要。我们讨论了这些数据对Hsp70-Hsp 40伴侣机制作用机制的影响。