Nicoll W S, Botha M, McNamara C, Schlange M, Pesce E-R, Boshoff A, Ludewig M H, Zimmermann R, Cheetham M E, Chapple J P, Blatch G L
Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa.
Int J Biochem Cell Biol. 2007;39(4):736-51. doi: 10.1016/j.biocel.2006.11.006. Epub 2006 Nov 23.
Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I-IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.
原核细胞和真核细胞都含有多种热休克蛋白40(Hsp40)和热休克蛋白70(Hsp70),它们作为分子伴侣协同作用,以确保蛋白质生物合成各个阶段的准确性。Hsp40的标志性结构域,即J结构域,是Hsp40与伴侣Hsp70结合所必需的,也可能在这种结合的特异性中发挥作用。通过替换原核Hsp40(DnaJ)的J结构域来创建嵌合Hsp40蛋白,我们测试了来自多种哺乳动物和寄生虫来源的不同Hsp40(疟原虫的Pfj1和Pfj4、锥虫的Tcj3、人类的ERj3、ERj5和Hsj1以及小鼠的ERj1)的J结构域的功能等效性。基于嵌合蛋白逆转dnaJ cbpA突变大肠杆菌菌株(OD259)热敏感性的能力,使用体内功能测定法来测试嵌合蛋白的功能。含有源自可溶性(胞质或内质网(ER)腔)Hsp40的J结构域的Hsp40嵌合体能够逆转大肠杆菌OD259的热敏感性。在所有情况下,这些嵌合蛋白的修饰衍生物在J结构域的HPD基序中含有His到Gln的取代,均无法逆转大肠杆菌OD259的热敏感性。这表明这些J结构域通过与大肠杆菌Hsp70即DnaK的特异性相互作用发挥其体内功能。有趣的是,含有整合膜结合型内质网Hsp40即ERj1的J结构域的Hsp40嵌合体无法逆转大肠杆菌OD259的热敏感性,这表明该J结构域无法与DnaK进行功能相互作用。在J结构域的所有四个螺旋(I-IV)和环区域中进行了保守氨基酸残基和基序的替换,并使用体内测定法测试了修饰后的嵌合Hsp40的功能。发现在测试的所有J结构域中,J结构域螺旋II中一个高度保守的碱性残基的替换会破坏其体内功能。我们提出,J结构域的螺旋II和HPD基序代表了Hsp40与Hsp70相互作用所需结合表面的基本元件,并且该表面在哺乳动物、寄生虫和细菌系统中是保守的。