Kondapalli P S, Shippy D J, Fairweather G
Department of Engineering Mechanics, University of Kentucky, Lexington 40506.
J Acoust Soc Am. 1992 Apr;91(4 Pt 1):1844-54. doi: 10.1121/1.403714.
The method of fundamental solutions (MFS) is a boundary method for the numerical solution of certain elliptic boundary value problems. In the MFS, the approximate solution is a linear combination of fundamental solutions of the governing partial differential equation, with singularities placed outside the domain of the problem. In the present paper, the MFS is applied to acoustic scattering in fluids. The singularities are allowed to move during the solution process from arbitrary locations to more optimal locations. Numerical results demonstrate that the "fictitious eigenfrequency" difficulty encountered with the boundary element method (BEM) is not present in the MFS. In addition, MFS results obtained by the use of fixed singularities are presented for scattering of waves in elastic solids.
基本解方法(MFS)是一种用于求解某些椭圆型边值问题数值解的边界方法。在MFS中,近似解是控制偏微分方程基本解的线性组合,奇点位于问题域之外。在本文中,MFS被应用于流体中的声散射问题。在求解过程中,奇点可以从任意位置移动到更优位置。数值结果表明,边界元法(BEM)中遇到的“虚拟本征频率”难题在MFS中不存在。此外,还给出了使用固定奇点得到的MFS结果,用于弹性固体中的波散射问题。