Suppr超能文献

光周期调节西伯利亚仓鼠(Phodopus sungorus)视交叉上核和结节部的多个基因表达。

Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).

作者信息

Johnston Jonathan D, Ebling Francis J P, Hazlerigg David G

机构信息

School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.

出版信息

Eur J Neurosci. 2005 Jun;21(11):2967-74. doi: 10.1111/j.1460-9568.2005.04148.x.

Abstract

Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.

摘要

光周期调节着许多生活在温带地区哺乳动物的季节性生理活动。光周期信息由下丘脑视交叉上核(SCN)中的主生物钟解码,然后通过松果体褪黑素分泌进行传导。这种神经化学信号由表达褪黑素受体的组织(如下丘脑结节部,PT)解读,以驱动生理变化。在本研究中,我们分析了西伯利亚仓鼠SCN和PT中生物钟机制的光周期调节。将雌性仓鼠置于长或短光周期下8周,并在24小时周期内每隔2小时取样一次。在SCN中,生物钟基因Per1、Per2、Cry1、Rev-erbalpha以及生物钟控制基因精氨酸加压素(AVP)和d元件结合蛋白(DBP)的节律性表达受光周期调节。所有这些含E盒的基因都追踪黎明,与短光周期相比,长光周期下mRNA表达峰值出现得更早。无论是否存在额外的调控顺式元件,这种反应都会发生,这表明SCN基因表达的光周期调节是通过一种常见的与E盒相关的机制进行的。在长光周期下,PT中Cry1和Per1的表达分别追踪褪黑素分泌的开始和结束。然而,虽然Cry1在短光周期下追踪褪黑素的开始,但Per1的表达没有明显的节律性。因此,我们提出,在SCN中,生物钟基因表达的光周期调节主要通过E盒发生,而褪黑素驱动的信号转导驱动PT中一部分生物钟基因的相位变化,独立于E盒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验