Suppr超能文献

绵羊视交叉上核和结节部中七个生物钟基因的时序表达:内源性巧合计时器的证据

Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer.

作者信息

Lincoln Gerald, Messager Sophie, Andersson Håkan, Hazlerigg David

机构信息

Medical Research Council, Human Reproductive Sciences Unit, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK.

出版信息

Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13890-5. doi: 10.1073/pnas.212517599. Epub 2002 Oct 8.

Abstract

The 24-h expression of seven clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2, and CK1 epsilon ) was assayed by in situ hybridization in the suprachiasmatic nucleus (SCN) and the pars tuberalis (PT) of the pituitary gland, collected every 4 h throughout 24 h, from female Soay sheep kept under long (16-h light/8-h dark) or short (8-h light/16-h dark) photoperiods. Locomotor activity was diurnal, inversely related to melatonin secretion, and prolactin levels were increased under long days. All clock genes were expressed in the ovine SCN and PT. In the SCN, there was a 24-h rhythm in Clock expression, in parallel with Bmal1, in antiphase with cycles in Per1 and Per2; there was low-amplitude oscillation of Cry1 and Cry2. The waveform of only Per1 and Per2 expression was affected by photoperiod, with extended elevated expression under long days. In the PT, the high-amplitude 24-h cycles in the expression of Bmal1, Clock, Per1, Per2, Cry1, and Cry2, but not CK1 epsilon, were influenced by photoperiod. Per1 and Per2 peaked during the day, whereas Cry1 and Cry2 peaked early in the night. Hence, photoperiod via melatonin had a marked effect on the phase relationship between Per/Cry genes in the PT. This supports the conclusion that an "external coincidence model" best explains the way photoperiod affects the waveform of clock gene expression in the SCN, the central pacemaker, whereas an "internal coincidence model" best explains the way melatonin affects the phasing of clock gene expression in the PT to mediate the photoperiodic control of a summer or winter physiology.

摘要

通过原位杂交法检测了7种生物钟基因(Bmal1、Clock、Per1、Per2、Cry1、Cry2和CK1ε)在视交叉上核(SCN)和垂体结节部(PT)中的24小时表达情况。这些样本取自处于长光照(16小时光照/8小时黑暗)或短光照(8小时光照/16小时黑暗)光周期下的雌性索艾羊,在24小时内每隔4小时采集一次。运动活动呈昼夜节律,与褪黑素分泌呈负相关,且长日照条件下催乳素水平升高。所有生物钟基因均在绵羊的SCN和PT中表达。在SCN中,Clock表达呈现24小时节律,与Bmal1同步,与Per1和Per2的周期呈反相;Cry1和Cry2有低幅度振荡。只有Per1和Per2的表达波形受光周期影响,长日照条件下其表达升高的时间延长。在PT中,Bmal1、Clock、Per1、Per2、Cry1和Cry2(但不包括CK1ε)表达的高幅度24小时周期受光周期影响。Per1和Per2在白天达到峰值,而Cry1和Cry2在夜晚早期达到峰值。因此,通过褪黑素的光周期对PT中Per/Cry基因之间的相位关系有显著影响。这支持了以下结论:“外部巧合模型”最能解释光周期影响中央起搏器SCN中生物钟基因表达波形的方式,而“内部巧合模型”最能解释褪黑素影响PT中生物钟基因表达相位以介导夏季或冬季生理光周期控制的方式。

相似文献

5
Photorefractoriness in mammals: dissociating a seasonal timer from the circadian-based photoperiod response.
Endocrinology. 2005 Sep;146(9):3782-90. doi: 10.1210/en.2005-0132. Epub 2005 May 26.
6
Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
Brain Res. 2005 Dec 7;1064(1-2):83-9. doi: 10.1016/j.brainres.2005.10.022. Epub 2005 Nov 14.
10
Photoperiod regulates clock gene rhythms in the ovine liver.
Gen Comp Endocrinol. 2005 Jul;142(3):357-63. doi: 10.1016/j.ygcen.2005.02.012. Epub 2005 Mar 17.

引用本文的文献

2
Energy balance drives diurnal and nocturnal brain transcriptome rhythms.
Cell Rep. 2024 Mar 26;43(3):113951. doi: 10.1016/j.celrep.2024.113951. Epub 2024 Mar 19.
3
Neuroendocrine effects of the duper mutation in Syrian hamsters: a role for .
Front Physiol. 2024 Feb 20;15:1351682. doi: 10.3389/fphys.2024.1351682. eCollection 2024.
4
Novel Insights into the Circadian Rhythms Based on Long Noncoding and Circular RNA Profiling.
Int J Mol Sci. 2024 Jan 18;25(2):1161. doi: 10.3390/ijms25021161.
5
Casein Kinase 1α as a Novel Factor Affects Thyrotropin Synthesis via PKC/ERK/CREB Signaling.
Int J Mol Sci. 2023 Apr 11;24(8):7034. doi: 10.3390/ijms24087034.
6
Limits of entrainment of circadian neuronal networks.
Chaos. 2023 Jan;33(1):013137. doi: 10.1063/5.0122744.
8
Hypophysial angiogenesis decodes annual time and underlies physiological adaptation to seasonal changes in the environment.
J Exp Zool A Ecol Integr Physiol. 2022 Dec;337(9-10):939-951. doi: 10.1002/jez.2639. Epub 2022 Jul 18.
10
The Circadian Physiology: Implications in Livestock Health.
Int J Mol Sci. 2021 Feb 20;22(4):2111. doi: 10.3390/ijms22042111.

本文引用的文献

4
Nuclear entry mechanism of rat PER2 (rPER2): role of rPER2 in nuclear localization of CRY protein.
Mol Cell Biol. 2001 Oct;21(19):6651-9. doi: 10.1128/MCB.21.19.6651-6659.2001.
5
Decoding photoperiodic time and melatonin in mammals: what can we learn from the pars tuberalis?
J Biol Rhythms. 2001 Aug;16(4):326-35. doi: 10.1177/074873001129002042.
6
Clock genes in the heart: characterization and attenuation with hypertrophy.
Circ Res. 2001 Jun 8;88(11):1142-50. doi: 10.1161/hh1101.091190.
7
Modeling the molecular calendar.
J Biol Rhythms. 2001 Apr;16(2):117-23; discussion 124. doi: 10.1177/074873001129001818.
8
Assembling a clock for all seasons: are there M and E oscillators in the genes?
J Biol Rhythms. 2001 Apr;16(2):105-16. doi: 10.1177/074873001129001809.
9
MPer1 and mper2 are essential for normal resetting of the circadian clock.
J Biol Rhythms. 2001 Apr;16(2):100-4. doi: 10.1177/074873001129001791.
10
Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster.
Neuroreport. 2001 Mar 5;12(3):579-82. doi: 10.1097/00001756-200103050-00029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验