Suppr超能文献

脑机接口控制背后的神经机制。

Neuronal mechanisms underlying control of a brain-computer interface.

作者信息

Hinterberger Thilo, Veit Ralf, Wilhelm Barbara, Weiskopf Nikolaus, Vatine Jean-Jacques, Birbaumer Niels

机构信息

Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Gartenstrasse 29, D-72074 Tübingen, Germany.

出版信息

Eur J Neurosci. 2005 Jun;21(11):3169-81. doi: 10.1111/j.1460-9568.2005.04092.x.

Abstract

Brain-computer interfaces (BCIs) enable humans or animals to communicate or control external devices without muscle activity using electric brain signals. The BCI used here is based on self-regulation of slow cortical potentials (SCPs), a skill that most people and paralyzed patients can acquire with training periods of several hours up to months. The neurophysiological mechanisms and anatomical sources of SCPs and other event-related brain potentials have been described but the neural mechanisms underlying the self-regulation skill for the use of a BCI are unknown. To uncover the relevant areas of brain activation during regulation of SCPs, the BCI was combined with functional magnetic resonance imaging. The electroencephalogram was recorded inside the magnetic resonance imaging scanner in 12 healthy participants who learned to regulate their SCP with feedback and reinforcement. The results demonstrate activation of specific brain areas during execution of the brain regulation skill allowing a person to activate an external device; a successful positive SCP shift compared with a negative shift was closely related to an increase of the blood oxygen level-dependent response in the basal ganglia. Successful negativity was related to an increased blood oxygen level-dependent response in the thalamus compared with successful positivity. These results may indicate learned regulation of a cortico-striatal-thalamic loop modulating local excitation thresholds of cortical assemblies. The data support the assumption that human subjects learn the regulation of cortical excitation thresholds of large neuronal assemblies as a prerequisite for direct brain communication using an SCP-driven BCI. This skill depends critically on an intact and flexible interaction between the cortico-basal ganglia-thalamic circuits.

摘要

脑机接口(BCIs)使人类或动物能够利用脑电信号在不产生肌肉活动的情况下与外部设备进行通信或控制。这里所使用的脑机接口基于慢皮层电位(SCPs)的自我调节,大多数人和瘫痪患者经过数小时至数月的训练都能掌握这一技能。SCPs以及其他事件相关脑电位的神经生理机制和解剖学来源已被描述,但使用脑机接口的自我调节技能背后的神经机制尚不清楚。为了揭示在SCPs调节过程中大脑激活的相关区域,将脑机接口与功能磁共振成像相结合。在磁共振成像扫描仪内记录了12名健康参与者的脑电图,这些参与者通过反馈和强化学习来调节他们的SCPs。结果表明,在执行大脑调节技能从而使人能够激活外部设备的过程中,特定脑区被激活;与负向变化相比,成功的正向SCP变化与基底神经节中血氧水平依赖反应的增加密切相关。与成功的正向变化相比,成功的负向变化与丘脑中血氧水平依赖反应的增加有关。这些结果可能表明,皮质-纹状体-丘脑环路的学习调节可调节皮质组件的局部兴奋阈值。数据支持这样一种假设,即人类受试者学习调节大型神经元组件的皮质兴奋阈值是使用基于SCP驱动的脑机接口进行直接脑通信的先决条件。这项技能严重依赖于皮质-基底神经节-丘脑回路之间完整且灵活的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验