Poirier Frédéric J A M, Gurnsey Rick
Neurodynamics and Vision Lab--Centre for Vision Research, York University, Computer Sciences and Engineering Building, Room B0002E, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
Vision Res. 2005 Aug;45(18):2436-48. doi: 10.1016/j.visres.2005.03.007. Epub 2005 Apr 21.
Eccentricity-dependent resolution losses are sometimes compensated for in psychophysical experiments by magnifying (scaling) stimuli at each eccentricity. The use of either pre-selected scaling factors or unscaled stimuli sometimes leads to non-monotonic changes in performance as a function of eccentricity. We argue that such non-monotonic changes arise when performance is limited by more than one type of constraint at each eccentricity. Building on current methods developed to investigate peripheral perception [e.g., Watson, A. B. (1987). Estimation of local spatial scale. Journal of the Optical Society of America A, 4 (8), 1579-1582; Poirier, F. J. A. M., & Gurnsey, R. (2002). Two eccentricity dependent limitations on subjective contour discrimination. Vision Research, 42, 227-238; Strasburger, H., Rentschler, I., & Harvey Jr., L. O. (1994). Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience, 6, 1583-1588], we show how measured scaling can deviate from a linear function of eccentricity in a grating acuity task [Thibos, L. N., Still, D. L., & Bradley, A. (1996). Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Research, 36(2), 249-258]. This framework can also explain the central performance drop [Kehrer, L. (1989). Central performance drop on perceptual segregation tasks. Spatial Vision, 4, 45-62] and a case of "reverse scaling" of the integration window in symmetry [Tyler, C. W. (1999). Human symmetry detection exhibits reverse eccentricity scaling. Visual Neuroscience, 16, 919-922]. These cases of non-monotonic performance are shown to be consistent with multiple sources of resolution loss, each of which increases linearly with eccentricity. We conclude that most eccentricity research, including "oddities", can be explained by multiple-scaling theory as extended here, where the receptive field properties of all underlying mechanisms in a task increase in size with eccentricity, but not necessarily at the same rate.
在心理物理学实验中,有时会通过放大(缩放)每个离心率下的刺激来补偿与离心率相关的分辨率损失。使用预先选择的缩放因子或未缩放的刺激有时会导致性能随离心率呈现非单调变化。我们认为,当每个离心率下的性能受到多种类型的限制时,就会出现这种非单调变化。基于当前为研究周边视觉而开发的方法[例如,沃森,A. B.(1987年)。局部空间尺度的估计。《美国光学学会杂志A》,4(8),1579 - 1582;波里尔,F. J. A. M.,& 古恩西,R.(2002年)。主观轮廓辨别中与离心率相关的两个限制。《视觉研究》,42,227 - 238;施特拉斯伯格,H.,伦施勒,I.,& 哈维 Jr.,L. O.(1994年)。皮层放大理论无法预测视觉识别。《欧洲神经科学杂志》,6,1583 - 1588],我们展示了在光栅敏锐度任务[蒂博斯,L. N.,斯蒂尔,D. L.,& 布拉德利,A.(1996年)。周边视觉中空间混叠和对比度敏感性的表征。《视觉研究》,36(2),249 - 258]中,测量的缩放如何偏离离心率的线性函数。这个框架还可以解释中心性能下降[凯勒,L.(1989年)。感知分离任务中的中心性能下降。《空间视觉》,4,45 - 62]以及对称性中整合窗口的“反向缩放”情况[泰勒,C. W.(1999年)。人类对称性检测呈现反向离心率缩放。《视觉神经科学》,16,919 - 922]。这些非单调性能的情况被证明与分辨率损失的多种来源一致,每种来源都随离心率线性增加。我们得出结论,包括“奇特现象”在内的大多数离心率研究都可以用这里扩展的多重缩放理论来解释,即在一项任务中所有潜在机制的感受野特性随离心率增大,但不一定以相同的速率增大。