Graham M Ruth, Haberman Craig J, Brewster John F, Girling Linda G, McManus Bruce M, Mutch W Alan C
Department of Anesthesia, University of Manitoba, Winnipeg, Manitoba, Canada.
Respir Res. 2005 Jun 28;6(1):64. doi: 10.1186/1465-9921-6-64.
With biologically variable ventilation [BVV--using a computer-controller to add breath-to-breath variability to respiratory frequency (f) and tidal volume (VT)] gas exchange and respiratory mechanics were compared using the ARDSNet low VT algorithm (Control) versus an approach using mathematical modelling to individually optimise VT at the point of maximal compliance change on the convex portion of the inspiratory pressure-volume (P-V) curve (Experimental).
Pigs (n = 22) received pentothal/midazolam anaesthesia, oleic acid lung injury, then inspiratory P-V curve fitting to the four-parameter logistic Venegas equation F(P) = a + b[1 + e-(P-c)/d]-1 where: a = volume at lower asymptote, b = the vital capacity or the total change in volume between the lower and upper asymptotes, c = pressure at the inflection point and d = index related to linear compliance. Both groups received BVV with gas exchange and respiratory mechanics measured hourly for 5 hrs. Postmortem bronchoalveolar fluid was analysed for interleukin-8 (IL-8).
All P-V curves fit the Venegas equation (R2 > 0.995). Control VT averaged 7.4 +/- 0.4 mL/kg as compared to Experimental 9.5 +/- 1.6 mL/kg (range 6.6 - 10.8 mL/kg; p < 0.05). Variable VTs were within the convex portion of the P-V curve. In such circumstances, Jensen's inequality states "if F(P) is a convex function defined on an interval (r, s), and if P is a random variable taking values in (r, s), then the average or expected value (E) of F(P); E(F(P)) > F(E(P))." In both groups the inequality applied, since F(P) defines volume in the Venegas equation and (P) pressure and the range of VTs varied within the convex interval for individual P-V curves. Over 5 hrs, there were no significant differences between groups in minute ventilation, airway pressure, blood gases, haemodynamics, respiratory compliance or IL-8 concentrations.
No difference between groups is a consequence of BVV occurring on the convex interval for individualised Venegas P-V curves in all experiments irrespective of group. Jensen's inequality provides theoretical proof of why a variable ventilatory approach is advantageous under these circumstances. When using BVV, with VT centred by Venegas P-V curve analysis at the point of maximal compliance change, some leeway in low VT settings beyond ARDSNet protocols may be possible in acute lung injury. This study also shows that in this model, the standard ARDSNet algorithm assures ventilation occurs on the convex portion of the P-V curve.
采用生物可变通气(BVV,使用计算机控制器在呼吸频率(f)和潮气量(VT)上逐次呼吸增加变异性),运用急性呼吸窘迫综合征网络(ARDSNet)低VT算法(对照组)与使用数学模型在吸气压力-容积(P-V)曲线凸部最大顺应性变化点单独优化VT的方法(实验组)比较气体交换和呼吸力学。
猪(n = 22)接受硫喷妥钠/咪达唑仑麻醉,油酸诱导肺损伤,然后将吸气P-V曲线拟合到四参数逻辑斯蒂Venegas方程F(P) = a + b[1 + e-(P-c)/d]-1,其中:a =下渐近线处的容积,b =肺活量或上下渐近线之间的总容积变化,c =拐点处的压力,d =与线性顺应性相关的指数。两组均接受BVV,每小时测量气体交换和呼吸力学,持续5小时。对死后支气管肺泡灌洗液进行白细胞介素-8(IL-8)分析。
所有P-V曲线均符合Venegas方程(R2 > 0.995)。对照组VT平均为7.4 ± 0.4 mL/kg,而实验组为9.5 ± 1.6 mL/kg(范围6.6 - 10.8 mL/kg;p < 0.05)。可变VT处于P-V曲线的凸部。在这种情况下,詹森不等式表明“如果F(P)是定义在区间(r, s)上的凸函数,且如果P是取值于(r, s)的随机变量,那么F(P)的平均值或期望值(E);E(F(P)) > F(E(P))。”在两组中该不等式均适用,因为在Venegas方程中F(P)定义容积,(P)定义压力,且对于个体P-V曲线,VT范围在凸区间内变化。在5小时内,两组在分钟通气量、气道压力、血气、血流动力学、呼吸顺应性或IL-8浓度方面无显著差异。
各组之间无差异是由于在所有实验中,无论组别如何,BVV均发生在个体化Venegas P-V曲线的凸区间。詹森不等式为在这些情况下可变通气方法为何具有优势提供了理论证明。当使用BVV时,通过Venegas P-V曲线分析将VT定位于最大顺应性变化点,在急性肺损伤中,超出ARDSNet方案的低VT设置可能有一定余地。本研究还表明,在该模型中,标准的ARDSNet算法可确保通气发生在P-V曲线的凸部。