Boomsma Wouter, Hamelryck Thomas
Bioinformatics center, Institute of Molecular Biology and Physiology, University of Copenhagen, Universitetsparken 15, Building 10, DK-2100 Copenhagen, Denmark.
BMC Bioinformatics. 2005 Jun 28;6:159. doi: 10.1186/1471-2105-6-159.
Various forms of the so-called loop closure problem are crucial to protein structure prediction methods. Given an N- and a C-terminal end, the problem consists of finding a suitable segment of a certain length that bridges the ends seamlessly. In homology modelling, the problem arises in predicting loop regions. In de novo protein structure prediction, the problem is encountered when implementing local moves for Markov Chain Monte Carlo simulations. Most loop closure algorithms keep the bond angles fixed or semi-fixed, and only vary the dihedral angles. This is appropriate for a full-atom protein backbone, since the bond angles can be considered as fixed, while the (phi, psi) dihedral angles are variable. However, many de novo structure prediction methods use protein models that only consist of Calpha atoms, or otherwise do not make use of all backbone atoms. These methods require a method that alters both bond and dihedral angles, since the pseudo bond angle between three consecutive Calpha atoms also varies considerably.
Here we present a method that solves the loop closure problem for Calpha only protein models. We developed a variant of Cyclic Coordinate Descent (CCD), an inverse kinematics method from the field of robotics, which was recently applied to the loop closure problem. Since the method alters both bond and dihedral angles, which is equivalent to applying a full rotation matrix, we call our method Full CCD (FCDD). FCCD replaces CCD's vector-based optimization of a rotation around an axis with a singular value decomposition-based optimization of a general rotation matrix. The method is easy to implement and numerically stable.
We tested the method's performance on sets of random protein Calpha segments between 5 and 30 amino acids long, and a number of loops of length 4, 8 and 12. FCCD is fast, has a high success rate and readily generates conformations close to those of real loops. The presence of constraints on the angles only has a small effect on the performance. A reference implementation of FCCD in Python is available as supplementary information.
各种形式的所谓环闭合问题对于蛋白质结构预测方法至关重要。给定一个N端和一个C端,该问题在于找到一段合适长度的片段,使其无缝连接两端。在同源建模中,该问题出现在预测环区域时。在从头蛋白质结构预测中,当为马尔可夫链蒙特卡罗模拟实施局部移动时会遇到该问题。大多数环闭合算法保持键角固定或半固定,仅改变二面角。这对于全原子蛋白质主链是合适的,因为键角可被视为固定的,而(φ,ψ)二面角是可变的。然而,许多从头结构预测方法使用仅由α碳原子组成的蛋白质模型,或者不以其他方式利用所有主链原子。这些方法需要一种既能改变键角又能改变二面角的方法,因为三个连续α碳原子之间的伪键角也有相当大的变化。
在此我们提出一种解决仅含α碳原子的蛋白质模型的环闭合问题的方法。我们开发了循环坐标下降法(CCD)的一个变体,CCD是机器人领域的一种逆运动学方法,最近被应用于环闭合问题。由于该方法既能改变键角又能改变二面角,这等同于应用一个全旋转矩阵,我们将我们的方法称为全CCD(FCDD)。FCCD用基于奇异值分解的一般旋转矩阵优化取代了CCD基于向量的绕轴旋转优化。该方法易于实现且数值稳定。
我们在长度为5至30个氨基酸的随机蛋白质α碳片段集以及一些长度为4、8和12的环上测试了该方法的性能。FCCD速度快,成功率高,并且容易生成接近真实环的构象。角度约束的存在对性能仅有很小的影响。FCCD在Python中的参考实现作为补充信息提供。