Suppr超能文献

回路闭合的运动学观点。

A kinematic view of loop closure.

作者信息

Coutsias Evangelos A, Seok Chaok, Jacobson Matthew P, Dill Ken A

机构信息

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

J Comput Chem. 2004 Mar;25(4):510-28. doi: 10.1002/jcc.10416.

Abstract

We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/.

摘要

我们考虑闭环问题,即,对于给定结构的蛋白质分子链段,找出其可能的主链结构集合,这些结构要与链的前后部分在几何上保持一致。基于机器人学文献中关于最一般情况下斜转子等效旋转连杆机构运动学的内容,我们将确定六个扭转角的环构象问题简化为求解一个单变量十六次多项式的实根。对于三对扭转轴中的每一对都有一个公共点的情况,我们给出了该多项式的一个简单直观的视图和推导。我们的方法推广了先前关于解析闭环的工作,因为扭转角不必是连续的,并且在自由扭转之间允许有任何刚性的中间片段。我们的方法还允许键角和肽扭转角有一定程度的灵活性;如将该方法应用于环五肽建模所示,这大大扩大了可解构型的空间。我们将该方法进一步应用于两个重要问题。首先,我们表明这种解析闭环算法可以有效地与现有的环构建算法相结合,以对超过三个残基的环进行采样。其次,当应用于八残基环的全局最小化时,我们表明通过采用闭环算法生成的局部移动,蒙特卡罗最小化的效率提高了几倍。我们的闭环算法可在http://dillgroup.ucsf.edu/loop_closure/免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验