Ho Mae-Wan, Ulanowicz Robert
Biophysics Group, Department of Pharmacy, King's College, London SE1 9NN, UK.
Biosystems. 2005 Oct;82(1):39-51. doi: 10.1016/j.biosystems.2005.05.009.
Schrödinger [Schrödinger, E., 1944. What is Life? Cambridge University Press, Cambridge] marvelled at how the organism is able to use metabolic energy to maintain and even increase its organisation, which could not be understood in terms of classical statistical thermodynamics. Ho [Ho, M.W., 1993. The Rainbow and the Worm, The Physics of Organisms, World Scientific, Singapore; Ho, M.W., 1998a. The Rainbow and the Worm, The Physics of Organisms, 2nd (enlarged) ed., reprinted 1999, 2001, 2003 (available online from ISIS website www.i-sis.org.uk)] outlined a novel "thermodynamics of organised complexity" based on a nested dynamical structure that enables the organism to maintain its organisation and simultaneously achieve non-equilibrium and equilibrium energy transfer at maximum efficiency. This thermodynamic model of the organism is reminiscent of the dynamical structure of steady state ecosystems identified by Ulanowicz [Ulanowicz, R.E., 1983. Identifying the structure of cycling in ecosystems. Math. Biosci. 65, 210-237; Ulanowicz, R.E., 2003. Some steps towards a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530]. The healthy organism excels in maintaining its organisation and keeping away from thermodynamic equilibrium--death by another name--and in reproducing and providing for future generations. In those respects, it is the ideal sustainable system. We propose therefore to explore the common features between organisms and ecosystems, to see how far we can analyse sustainable systems in agriculture, ecology and economics as organisms, and to extract indicators of the system's health or sustainability. We find that looking at sustainable systems as organisms provides fresh insights on sustainability, and offers diagnostic criteria for sustainability that reflect the system's health. In the case of ecosystems, those diagnostic criteria of health translate into properties such as biodiversity and productivity, the richness of cycles, the efficiency of energy use and minimum dissipation. In the case of economic systems, they translate into space-time differentiation or organised heterogeneity, local autonomy and sufficiency at appropriate levels, reciprocity and equality of exchange, and most of all, balancing the exploitation of natural resources--real input into the system--against the ability of the ecosystem to regenerate itself.
薛定谔[薛定谔,E.,1944年。《生命是什么?》剑桥大学出版社,剑桥]惊叹于生物体如何能够利用代谢能量来维持甚至增强其组织结构,而这从经典统计热力学的角度是无法理解的。何[何美武,1993年。《彩虹与蠕虫:生物体的物理学》,世界科学出版社,新加坡;何美武,1998a。《彩虹与蠕虫:生物体的物理学》,第2版(增订版),1999年、2001年、2003年重印(可从ISIS网站www.i-sis.org.uk在线获取)]基于一种嵌套动态结构勾勒出一种新颖的“有序复杂性热力学”,这种结构使生物体能够维持其组织结构,同时以最高效率实现非平衡和平衡能量转移。这种生物体的热力学模型让人联想到乌拉诺维茨[乌拉诺维茨,R.E.,1983年。识别生态系统中的循环结构。数学生物学。65,210 - 237;乌拉诺维茨,R.E.,2003年。迈向生态系统动力学核心理论的一些步骤。计算生物学与化学。27,523 - 530]所确定的稳态生态系统的动态结构。健康的生物体擅长维持其组织结构并远离热力学平衡——也就是死亡的另一种说法——以及进行繁殖和为后代提供保障。在这些方面,它是理想的可持续系统。因此,我们提议探索生物体与生态系统之间的共同特征,看看在多大程度上我们可以将农业、生态和经济中的可持续系统分析为生物体,并提取系统健康或可持续性的指标。我们发现将可持续系统视为生物体能够为可持续性提供新的见解,并提供反映系统健康状况的可持续性诊断标准。就生态系统而言,这些健康诊断标准转化为生物多样性和生产力、循环的丰富性、能量利用效率和最小耗散等属性。就经济系统而言,它们转化为时空差异或有序异质性、适当层面的地方自主性和自给自足、交换的互惠性和平等性,以及最重要的是,平衡对自然资源的开发——系统的实际投入——与生态系统自我再生的能力。