Beernink Peter T, Hwang Mona, Ramirez Melissa, Murphy Michael B, Doyle Sharon A, Thelen Michael P
Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
J Biol Chem. 2005 Aug 26;280(34):30206-13. doi: 10.1074/jbc.M502155200. Epub 2005 Jun 28.
Protein interactions critical to DNA repair and cell cycle control systems are often coordinated by modules that belong to a superfamily of structurally conserved BRCT domains. Because the mechanisms of BRCT interactions and their significance are not well understood, we sought to define the affinity and specificity of those BRCT modules that orchestrate base excision repair and single-strand break repair. Common to these pathways is the essential XRCC1 DNA repair protein, which interacts with at least nine other proteins and DNA. Here, we characterized the interactions of four purified BRCT domains, two from XRCC1 and their two partners from DNA ligase IIIalpha and poly(ADP-ribosyl) polymerase 1. A monoclonal antibody was selected that recognizes the ligase IIIalpha BRCT domain, but not the other BRCT domains, and was used to capture the relevant ligase IIIalpha BRCT complex. To examine the assembly states of isolated BRCT domains and pairwise domain complexes, we used size-exclusion chromatography coupled with on-line light scattering. This analysis indicated that isolated BRCT domains form homo-oligomers and that the BRCT complex between the C-terminal XRCC1 domain and the ligase IIIalpha domain is a heterotetramer with 2:2 stoichiometry. Using affinity capture and surface plasmon resonance methods, we determined that specific heteromeric interactions with high nanomolar dissociation constants occur between pairs of cognate BRCT domains. A structural model for a XRCC1 x DNA ligase IIIalpha heterotetramer is proposed as a core base excision repair complex, which constitutes a scaffold for higher order complexes to which other repair proteins and DNA are brought into proximity.
对DNA修复和细胞周期控制系统至关重要的蛋白质相互作用通常由属于结构保守的BRCT结构域超家族的模块来协调。由于BRCT相互作用的机制及其意义尚未完全了解,我们试图确定那些协调碱基切除修复和单链断裂修复的BRCT模块的亲和力和特异性。这些途径的共同之处是必不可少的XRCC1 DNA修复蛋白,它与至少九种其他蛋白质和DNA相互作用。在这里,我们表征了四个纯化的BRCT结构域的相互作用,其中两个来自XRCC1,另外两个来自DNA连接酶IIIα和聚(ADP-核糖基)聚合酶1。我们选择了一种单克隆抗体,它能识别连接酶IIIα的BRCT结构域,但不能识别其他BRCT结构域,并用于捕获相关的连接酶IIIα BRCT复合物。为了检查分离的BRCT结构域和成对结构域复合物的组装状态,我们使用了尺寸排阻色谱法结合在线光散射。该分析表明,分离的BRCT结构域形成同源寡聚体,并且C末端XRCC1结构域和连接酶IIIα结构域之间的BRCT复合物是化学计量比为2:2的异源四聚体。使用亲和捕获和表面等离子体共振方法,我们确定同源BRCT结构域对之间发生具有高纳摩尔解离常数的特异性异源相互作用。我们提出了一个XRCC1 x DNA连接酶IIIα异源四聚体的结构模型,作为核心碱基切除修复复合物,它构成了一个高阶复合物的支架,其他修复蛋白和DNA被带到该支架附近。