Suppr超能文献

氧化 DNA 损伤的碱基切除修复:从机制到疾病。

Base excision repair of oxidative DNA damage: from mechanism to disease.

机构信息

Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160.

Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,

出版信息

Front Biosci (Landmark Ed). 2017 Mar 1;22(9):1493-1522. doi: 10.2741/4555.

Abstract

Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.

摘要

活性氧自由基持续攻击 DNA 结构,导致碱基氧化和断裂。氧化 DNA 损伤本身及其修复都介导了许多常见人类疾病的进展。负责清除氧化 DNA 损伤、从而维持基因组完整性的主要途径是碱基切除修复(BER)。结构往往决定功能,这一观点已被证明是正确的,因为最近的许多结构生物学研究有助于阐明关键 BER 酶在修复受损 DNA 时使用的分子机制。这篇综述重点介绍了 BER 酶的机制细节以及这些酶在人类疾病(包括癌症和神经退行性疾病)的发生和发展过程中的关联。进一步阐明仍然难以捉摸的 BER 机制,扩展这些结构和生化研究,并努力更好地了解这些酶如何形成复合物以促进 DNA 修复,这是理解 BER 如何导致人类疾病以及如何操纵它来改变患者结局的关键下一步。

相似文献

1
Base excision repair of oxidative DNA damage: from mechanism to disease.
Front Biosci (Landmark Ed). 2017 Mar 1;22(9):1493-1522. doi: 10.2741/4555.
2
Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage.
Antioxid Redox Signal. 2011 Jun 15;14(12):2491-507. doi: 10.1089/ars.2010.3466. Epub 2010 Oct 28.
3
A chemical and kinetic perspective on base excision repair of DNA.
Acc Chem Res. 2014 Apr 15;47(4):1238-46. doi: 10.1021/ar400275a. Epub 2014 Mar 19.
4
Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis.
Mutagenesis. 2020 Feb 13;35(1):39-50. doi: 10.1093/mutage/gez029.
5
Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
Trends Biochem Sci. 2019 Sep;44(9):765-781. doi: 10.1016/j.tibs.2019.04.006. Epub 2019 May 9.
6
Oxidative DNA damage repair in mammalian cells: a new perspective.
DNA Repair (Amst). 2007 Apr 1;6(4):470-80. doi: 10.1016/j.dnarep.2006.10.011. Epub 2006 Nov 20.
7
DNA repair in mammalian cells: Base excision repair: the long and short of it.
Cell Mol Life Sci. 2009 Mar;66(6):981-93. doi: 10.1007/s00018-009-8736-z.
10
Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses.
J Biol Chem. 2003 Oct 10;278(41):39951-9. doi: 10.1074/jbc.M306592200. Epub 2003 Jul 25.

引用本文的文献

2
Protein-Protein Interactions in Base Excision Repair.
Biomolecules. 2025 Jun 18;15(6):890. doi: 10.3390/biom15060890.
3
Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders.
Antioxidants (Basel). 2025 May 11;14(5):578. doi: 10.3390/antiox14050578.
7
Prothrombotic State and Vascular Damage in Angiotensin II-Induced Hypertension: Influence of Waterpipe Smoke Exposure.
Oxid Med Cell Longev. 2025 Jan 23;2025:2670738. doi: 10.1155/omcl/2670738. eCollection 2025.
8
Decoding mitochondrial DNA damage and repair associated with infection.
Front Cell Infect Microbiol. 2025 Jan 21;14:1529441. doi: 10.3389/fcimb.2024.1529441. eCollection 2024.
9
Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair.
Biomedicines. 2024 Dec 11;12(12):2808. doi: 10.3390/biomedicines12122808.

本文引用的文献

1
PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions.
Br J Cancer. 2016 Nov 8;115(10):1157-1173. doi: 10.1038/bjc.2016.311. Epub 2016 Oct 13.
2
Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair.
Oncotarget. 2016 Nov 15;7(46):75197-75209. doi: 10.18632/oncotarget.12113.
3
Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
Nucleic Acids Res. 2016 Dec 1;44(21):10248-10258. doi: 10.1093/nar/gkw768. Epub 2016 Aug 31.
6
The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma.
Mediators Inflamm. 2016;2016:3762561. doi: 10.1155/2016/3762561. Epub 2016 Jul 25.
7
Suppression of human 8-oxoguanine DNA glycosylase (OGG1) augments ultrasound-induced apoptosis in cervical cancer cells.
Ultrasonics. 2016 Dec;72:1-14. doi: 10.1016/j.ultras.2016.07.005. Epub 2016 Jul 11.
8
XRCC1 and OGG1 Gene Polymorphisms and Breast Cancer: A Systematic Review of Literature.
Iran J Cancer Prev. 2016 Feb 23;9(1):e3467. doi: 10.17795/ijcp-3467. eCollection 2016 Feb.
9
Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7792-7. doi: 10.1073/pnas.1604591113. Epub 2016 Jun 27.
10
Association of XRCC1 gene polymorphisms and pancreatic cancer risk in a Chinese population.
Genet Mol Res. 2016 Jun 3;15(2):gmr8080. doi: 10.4238/gmr.15028080.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验