Suppr超能文献

皮质骨中骨细胞陷窝组织应变

Osteocyte lacunae tissue strain in cortical bone.

作者信息

Nicolella Daniel P, Moravits Donald E, Gale Adrian M, Bonewald Lynda F, Lankford James

机构信息

Mechanical and Materials Engineering Division, Southwest Research Institute, San Antonio, TX, USA.

出版信息

J Biomech. 2006;39(9):1735-43. doi: 10.1016/j.jbiomech.2005.04.032. Epub 2005 Jul 1.

Abstract

Current theories suggest that bone modeling and remodeling are controlled at the cellular level through signals mediated by osteocytes. However, the specific signals to which bone cells respond are still unknown. Two primary theories are: (1) osteocytes are stimulated via the mechanical deformation of the perilacunar bone matrix and (2) osteocytes are stimulated via fluid flow generated shear stresses acting on osteocyte cell processes within canaliculi. Recently, much focus has been placed on fluid flow theories since in vitro experiments have shown that bone cells are more responsive to analytically estimated levels of fluid shear stress than to direct mechanical stretching using macroscopic strain levels measured on bone in vivo. However, due to the complex microstructural organization of bone, local perilacunar bone tissue strains potentially acting on osteocytes cannot be reliably estimated from macroscopic bone strain measurements. Thus, the objective of this study was to quantify local perilacunar bone matrix strains due to macroscopically applied bone strains similar in magnitude to those that occur in vivo. Using a digital image correlation strain measurement technique, experimentally measured bone matrix strains around osteocyte lacunae resulting from macroscopic strains of approximately 2000 microstrain are significantly greater than macroscopic strain on average and can reach peak levels of over 30,000 microstrain locally. Average strain concentration factors ranged from 1.1 to 3.8, which is consistent with analytical and numerical estimates. This information should lead to a better understanding of how bone cells are affected by whole bone functional loading.

摘要

目前的理论认为,骨建模和重塑在细胞水平上是通过骨细胞介导的信号来控制的。然而,骨细胞所响应的具体信号仍然未知。有两种主要理论:(1)骨细胞通过骨陷窝周围骨基质的机械变形受到刺激;(2)骨细胞通过作用于骨小管内骨细胞突起的流体流动产生的剪切应力受到刺激。最近,流体流动理论受到了很多关注,因为体外实验表明,与使用体内测量的宏观应变水平进行直接机械拉伸相比,骨细胞对分析估计的流体剪切应力水平反应更敏感。然而,由于骨的微观结构组织复杂,无法从宏观骨应变测量中可靠地估计可能作用于骨细胞的局部骨陷窝周围骨组织应变。因此,本研究的目的是量化由于宏观施加的骨应变(其大小与实际发生的骨应变相似)而导致的局部骨陷窝周围骨基质应变。使用数字图像相关应变测量技术,实验测量得出,由大约2000微应变的宏观应变引起的骨细胞陷窝周围的骨基质应变平均而言显著大于宏观应变,并且局部可达到超过30000微应变的峰值水平。平均应变集中系数范围为1.1至3.8,这与分析和数值估计结果一致。这些信息应该有助于更好地理解骨细胞如何受到全骨功能负荷的影响。

相似文献

1
Osteocyte lacunae tissue strain in cortical bone.
J Biomech. 2006;39(9):1735-43. doi: 10.1016/j.jbiomech.2005.04.032. Epub 2005 Jul 1.
2
Measurement of microstructural strain in cortical bone.
Eur J Morphol. 2005 Feb-Apr;42(1-2):23-9. doi: 10.1080/09243860500095364.
3
Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
Bone. 2020 Aug;137:115328. doi: 10.1016/j.bone.2020.115328. Epub 2020 Mar 20.
4
Microstructural strain near osteocyte lacuna in cortical bone in vitro.
J Musculoskelet Neuronal Interact. 2002 Mar;2(3):261-3.
5
Osteocyte lacunar strain determination using multiscale finite element analysis.
Bone Rep. 2020 May 19;12:100277. doi: 10.1016/j.bonr.2020.100277. eCollection 2020 Jun.
6
Measurement and estimation of osteocyte mechanical strain.
Bone. 2013 Jun;54(2):191-5. doi: 10.1016/j.bone.2013.01.037. Epub 2013 Jan 28.
7
Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis.
J Biomech. 2007;40(10):2199-206. doi: 10.1016/j.jbiomech.2006.10.040. Epub 2007 Jan 2.
8
[Mechanosensitivity of osteocytes].
Clin Calcium. 2012 May;22(5):697-704.
9
Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
Biomech Model Mechanobiol. 2014 Jan;13(1):85-97. doi: 10.1007/s10237-013-0487-y. Epub 2013 Apr 9.
10
[Osteocytes and mechanical stress].
Clin Calcium. 2008 Sep;18(9):1287-93.

引用本文的文献

1
Spatial variations in the osteocyte lacuno-canalicular network density and analysis of the connectomic parameters.
PLoS One. 2024 May 14;19(5):e0303515. doi: 10.1371/journal.pone.0303515. eCollection 2024.
2
The multi-faceted nature of age-associated osteoporosis.
Bone Rep. 2024 Mar 5;20:101750. doi: 10.1016/j.bonr.2024.101750. eCollection 2024 Mar.
4
Bone-homing metastatic breast cancer cells impair osteocytes' mechanoresponse in a 3D loading model.
Heliyon. 2023 Sep 21;9(10):e20248. doi: 10.1016/j.heliyon.2023.e20248. eCollection 2023 Oct.
5
Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging.
Biomech Model Mechanobiol. 2024 Feb;23(1):129-143. doi: 10.1007/s10237-023-01763-w. Epub 2023 Aug 29.
7
Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name?
Curr Osteoporos Rep. 2023 Feb;21(1):11-20. doi: 10.1007/s11914-022-00766-3. Epub 2022 Dec 13.
8
Sirt3 mediates the benefits of exercise on bone in aged mice.
Cell Death Differ. 2023 Jan;30(1):152-167. doi: 10.1038/s41418-022-01053-5. Epub 2022 Sep 24.
9
A Comparative Study on the Multiscale Mechanical Responses of Human Femoral Neck Between the Young and the Elderly Using Finite Element Method.
Front Bioeng Biotechnol. 2022 May 5;10:893337. doi: 10.3389/fbioe.2022.893337. eCollection 2022.
10
Finite Element Models of Osteocytes and Their Load-Induced Activation.
Curr Osteoporos Rep. 2022 Apr;20(2):127-140. doi: 10.1007/s11914-022-00728-9. Epub 2022 Mar 17.

本文引用的文献

1
Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.
Med Biol Eng Comput. 2004 Jan;42(1):14-21. doi: 10.1007/BF02351006.
3
The many adaptations of bone.
J Biomech. 2003 Oct;36(10):1487-95. doi: 10.1016/s0021-9290(03)00124-6.
4
Mechanotransduction and flow across the endothelial glycocalyx.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7988-95. doi: 10.1073/pnas.1332808100. Epub 2003 Jun 16.
5
Mechanical strain and bone cell function: a review.
Osteoporos Int. 2002 Sep;13(9):688-700. doi: 10.1007/s001980200095.
7
Primary adult human bone cells do not respond to tissue (continuum) level strains.
J Orthop Sci. 2001;6(3):295-301. doi: 10.1007/s007760100051.
8
Distribution of intracortical porosity in human midfemoral cortex by age and gender.
J Bone Miner Res. 2001 Jul;16(7):1308-17. doi: 10.1359/jbmr.2001.16.7.1308.
9
Machine vision photogrammetry: a technique for measurement of microstructural strain in cortical bone.
J Biomech. 2001 Jan;34(1):135-9. doi: 10.1016/s0021-9290(00)00163-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验