Suppr超能文献

基于共聚焦成像的计算模型预测了由于年龄增长导致的骨小管丧失引起的骨细胞和树突剪切应力的变化。

Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging.

机构信息

Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA.

Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA.

出版信息

Biomech Model Mechanobiol. 2024 Feb;23(1):129-143. doi: 10.1007/s10237-023-01763-w. Epub 2023 Aug 29.

Abstract

Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.

摘要

运动和体育活动对骨骼施加机械负荷,从而促进骨形成。然而,骨细胞中的骨陷窝-骨小管形态与局部感受机械应力的骨细胞之间的关系,以及将信号转导为骨形成的关系,尚未完全阐明。在这项研究中,我们使用计算模型来预测管腔密度、液体入口数量和载荷方向对流体剪切应力(FFSS)和骨应变的影响,以及这些因素如何随着年龄增长导致的骨陷窝-骨小管网络微观结构恶化而发生变化。最初,我们使用理想化的几何形状,通过流固耦合方法生成了具有十个或十八个树突的四个不同的骨细胞计算模型。接下来,我们从 4 个月大 C57BL/6 小鼠股骨的 FITC 染色共聚焦图像中开发了一个年轻和一个模拟的老年骨细胞,以使用计算流体动力学方法估计 FFSS。模型预测管腔中的流速高于骨陷窝。与五个入口相比,有五个与一个入口的理想模型比较表明,有四个更多的入口,一半的树突经历 FFSS 大于 0.8 Pa,这与成骨反应有关。基于真实骨细胞的共聚焦图像模型表明,年轻骨细胞模型中的管腔与骨陷窝表面积比模拟老年模型高六倍,并且年轻模型中的平均 FFSS(FFSS = 0.46 Pa)比老年模型高三倍(FFSS = 0.15 Pa)。有趣的是,FFSS 值大于 0.8 Pa 的表面面积在年轻模型中是模拟老年模型的 23 倍。这些发现可能解释了随着年龄增长骨细胞机械反应能力受损的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验