Suppr超能文献

Mitigation of azinphos-methyl in a vegetated stream: comparison of runoff- and spray-drift.

作者信息

Dabrowski J M, Bennett E R, Bollen A, Schulz R

机构信息

Freshwater Research Unit, Department of Zoology, University of Cape Town, Rhodes Gift 7701, South Africa.

出版信息

Chemosphere. 2006 Jan;62(2):204-12. doi: 10.1016/j.chemosphere.2005.05.021. Epub 2005 Jul 5.

Abstract

The effectiveness of aquatic macrophytes in reducing runoff- and spray-drift-induced azinphos-methyl (AZP) input was compared in a vegetated stream. Water, sediment and plant samples were taken at increasing distances from a point of input during a spray-drift event and two runoff (10 and 22 mm/day) events. Peak concentrations of AZP decreased significantly (R2=0.99; p<0.0001; n=5) from 0.24 microg/l to 0.11 microg/l during the 10mm runoff event. No reduction took place during the 22 mm event. AZP concentrations were reduced by 90% following spray-drift input, with peak concentrations decreasing significantly (R2=0.93; p=0.0084; n=5) from 4.3 microg/l to 1.7 microg/l with increasing distance from the point of input. Plant samples taken after the spray-drift event showed increased AZP concentrations in comparison to before the event indicating sorption of the pesticide to the macrophytes. Although peak concentrations of AZP were as effectively mitigated during the 10mm runoff event as during the spray-drift event, predictive modelling revealed that maximum concentrations expected during a worst-case scenario 10mm runoff event (0 days after application) are an order of magnitude lower than what can be expected for a worst-case spray-drift and 22 mm runoff event, suggesting that spray-drift-derived pesticide concentrations are more effectively mitigated than those of runoff.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验