Semin Boris K, Lovyagina Elena R, Timofeev Kirill N, Ivanov Ilya I, Rubin Andrei B, Seibert Michael
Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
Biochemistry. 2005 Jul 19;44(28):9746-57. doi: 10.1021/bi047618w.
Incubation of Mn-depleted PSII membranes [PSII(-Mn)] with Fe(II) is accompanied by the blocking of Y(Z)() at the high-affinity Mn-binding site to exogenous electron donors [Semin et al. (2002) Biochemistry 41, 5854-5864] and a shift of the pK(app) of the hydrogen bond partner for Y(Z) (base B) from 7.1 to 6.1 [Semin, B. K., and Seibert, M. (2004) Biochemistry 43, 6772-6782]. Here we calculate activation energies (E(a)) for Y(Z)() reduction in PSII(-Mn) and Fe-blocked PSII(-Mn) samples [PSII(-Mn, +Fe)] from temperature dependencies of the rate constants of the fast and slow components of the flash-probe fluorescence decay kinetics. At pH < pK(app) (e.g., 5.5), the decays are fit with one (fast) component in both types of samples, and E(a) is equal to 42.2 +/- 2.9 kJ/mol in PSII(-Mn) and 46.4 +/- 3.3 kJ/mol in PSII(-Mn, +Fe) membranes. At pH > pK(app), the decay kinetics exhibit an additional slow component in PSII(-Mn, +Fe) membranes (E(a) = 36.1 +/- 7.5 kJ/mol), which is much lower than the E(a) of the corresponding component observed for Y(Z)() reduction in PSII(-Mn) samples (48.1 +/- 1.7 kJ/mol). We suggest that the above difference results from the formation of a strong low barrier hydrogen bond (LBHB) between Y(Z) and base B in PSII(-Mn, +Fe) samples. To confirm this, Fe-blocking was performed in D(2)O to insert D(+), which has an energetic barrier distinct from H(+), into the LBHB. Measurement of the pH effects on the rates of Y(Z)() reduction in PSII(-Mn, +Fe) samples blocked in D(2)O shows a shift of the pK(app) from 6.1 to 7.6, and an increase in the E(a) of the slow component. This approach was also used to measure the stability of the Y(Z)() EPR signal at various temperatures in both kinds of membranes. In PSII(-Mn) membranes, the freeze-trapped Y(Z)() radical is stable below 190 K, but half of the Y(Z)() EPR signal disappears after a 1-min incubation when the sample is warmed to 253 K. In PSII(-Mn, +Fe) samples, the trapped Y(Z)() radical is unstable at a much lower temperature (77 K). However, the insertion of D(+) into the hydrogen bond between Y(Z) and base B during the blocking process increases the temperature stability of the Y(Z)(*) EPR signal at 77 K. Again, these results indicate that Fe-blocking involves Y(Z) in the formation of a LBHB, which in turn is consistent with the suggested existence of a LBHB between Y(Z) and base B in intact PSII membranes [Zhang, C., and Styring, S. (2003) Biochemistry 42, 8066-8076].
将贫锰的光系统II膜[PSII(-Mn)]与亚铁(II)一起温育时,高亲和力的锰结合位点处的Y(Z)()会对外源电子供体产生阻断作用[塞米恩等人(2002年),《生物化学》41卷,5854 - 5864页],并且Y(Z)的氢键伙伴(碱基B)的表观解离常数pK(app)会从7.1变为6.1[塞米恩,B.K.,和赛伯特,M.(2004年),《生物化学》43卷,6772 - 6782页]。在此,我们根据闪光 - 探针荧光衰减动力学快速和慢速成分速率常数的温度依赖性,计算了PSII(-Mn)和铁阻断的PSII(-Mn)样品[PSII(-Mn, +Fe)]中Y(Z)()还原的活化能(E(a))。在pH < pK(app)(例如5.5)时,两种样品中的衰减都可以用一个(快速)成分拟合,PSII(-Mn)中的E(a)等于42.2±2.9 kJ/mol,PSII(-Mn, +Fe)膜中的E(a)等于46.4±3.3 kJ/mol。在pH > pK(app)时,PSII(-Mn, +Fe)膜中的衰减动力学表现出一个额外的慢速成分(E(a) = 36.1±7.5 kJ/mol),该值远低于PSII(-Mn)样品中Y(Z)()还原时相应成分的E(a)(48.1±1.7 kJ/mol)。我们认为上述差异是由于PSII(-Mn, +Fe)样品中Y(Z)与碱基B之间形成了强低势垒氢键(LBHB)。为了证实这一点,在重水(D₂O)中进行铁阻断,以便将具有与氢离子(H⁺)不同能垒的氘离子(D⁺)插入LBHB中。对在D₂O中阻断的PSII(-Mn, +Fe)样品中Y(Z)()还原速率的pH效应测量表明,pK(app)从6.1变为7.6,并且慢速成分的E(a)增加。该方法还用于测量两种膜在不同温度下Y(Z)()电子顺磁共振(EPR)信号的稳定性。在PSII(-Mn)膜中,冷冻捕获的Y(Z)()自由基在190 K以下稳定,但当样品升温至253 K并温育1分钟后,Y(Z)()的EPR信号会消失一半。在PSII(-Mn, +Fe)样品中,捕获的Y(Z)()自由基在低得多的温度(77 K)下就不稳定。然而,在阻断过程中将D⁺插入Y(Z)与碱基B之间的氢键中,会增加77 K时Y(Z)(*) EPR信号的温度稳定性。同样,这些结果表明铁阻断涉及Y(Z)形成LBHB,这反过来又与完整光系统II膜中Y(Z)与碱基B之间存在LBHB的推测一致[张,C.,和斯廷林,S.(2003年),《生物化学》42卷,8066 - 8076页]。