Suppr超能文献

具有相关观测值的随机临床试验中的自适应设计与估计。

Adaptive design and estimation in randomized clinical trials with correlated observations.

作者信息

Yin Guosheng, Shen Yu

机构信息

Department of Biostatistics and Applied Mathematics, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.

出版信息

Biometrics. 2005 Jun;61(2):362-9. doi: 10.1111/j.1541-0420.2005.00333.x.

Abstract

Clinical trial designs involving correlated data often arise in biomedical research. The intracluster correlation needs to be taken into account to ensure the validity of sample size and power calculations. In contrast to the fixed-sample designs, we propose a flexible trial design with adaptive monitoring and inference procedures. The total sample size is not predetermined, but adaptively re-estimated using observed data via a systematic mechanism. The final inference is based on a weighted average of the block-wise test statistics using generalized estimating equations, where the weight for each block depends on cumulated data from the ongoing trial. When there are no significant treatment effects, the devised stopping rule allows for early termination of the trial and acceptance of the null hypothesis. The proposed design updates information regarding both the effect size and within-cluster correlation based on the cumulated data in order to achieve a desired power. Estimation of the parameter of interest and its confidence interval are proposed. We conduct simulation studies to examine the operating characteristics and illustrate the proposed method with an example.

摘要

涉及相关数据的临床试验设计在生物医学研究中经常出现。需要考虑群内相关性,以确保样本量和效能计算的有效性。与固定样本设计不同,我们提出了一种具有自适应监测和推断程序的灵活试验设计。总样本量不是预先确定的,而是通过一种系统机制使用观察到的数据进行自适应重新估计。最终推断基于使用广义估计方程的逐块检验统计量的加权平均值,其中每个块的权重取决于正在进行的试验的累积数据。当没有显著的治疗效果时,设计的停止规则允许提前终止试验并接受原假设。所提出的设计根据累积数据更新关于效应大小和群内相关性的信息,以实现所需的效能。提出了感兴趣参数及其置信区间的估计方法。我们进行模拟研究以检验操作特性,并通过一个例子说明所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验