Sanjuán Rafael, Wróbel Borys
Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Edifici d' Instituts de Paterna Apartat 2085 (R.S.), València, 46071, Spain.
Syst Biol. 2005 Apr;54(2):218-29. doi: 10.1080/10635150590923308.
A variety of analytical methods is available for branch testing in distance-based phylogenies. However, these methods are rarely used, possibly because the estimation of some of their statistics, especially the covariances, is not always feasible. We show that these difficulties can be overcome if some simplifying assumptions are made, namely distance independence. The weighted least-squares likelihood ratio test (WLS-LRT) we propose is easy to perform, using only the distances and some of their associated variances. If no variances are known, the use of the Felsenstein F-test, also based on weighted least squares, is discussed. Using simulated data and a data set of 43 mammalian mitochondrial sequences we demonstrate that the WLS-LRT performs as well as the generalized least-squares test, and indeed better for a large number of taxa data set. We thus show that the assumption of independence does not negatively affect the reliability or the accuracy of the least-squares approach. The results of the WLS-LRT are no worse than the results of the bootstrap methods, such as the Felsenstein bootstrap selection probability test and the Dopazo test. We also show that WLS-LRT can be applied in instances where other analytical methods are inappropriate. This point is illustrated by analyzing the relationships between human immunodeficiency virus type 1 (HIV-1) sequences isolated from various organs of different individuals.
在基于距离的系统发育分析中,有多种分析方法可用于分支检验。然而,这些方法很少被使用,可能是因为对其中一些统计量的估计,尤其是协方差的估计,并非总是可行的。我们表明,如果做出一些简化假设,即距离独立性,这些困难是可以克服的。我们提出的加权最小二乘似然比检验(WLS-LRT)很容易执行,只需要使用距离及其一些相关方差。如果方差未知,我们还讨论了同样基于加权最小二乘的费尔斯滕森F检验的使用。通过模拟数据和一个包含43个哺乳动物线粒体序列的数据集,我们证明WLS-LRT的性能与广义最小二乘检验相当,对于大量分类单元的数据集实际上表现更好。因此,我们表明独立性假设不会对最小二乘法的可靠性或准确性产生负面影响。WLS-LRT的结果不比自助法的结果差,如费尔斯滕森自助选择概率检验和多帕佐检验。我们还表明,WLS-LRT可应用于其他分析方法不适用的情况。通过分析从不同个体的各种器官分离出的1型人类免疫缺陷病毒(HIV-1)序列之间的关系,说明了这一点。