Suppr超能文献

使用相互连接的广义盒中脑状态神经网络的自联想记忆设计。

Autoassociative memory design using interconnected generalized brain-state-in-a-box neural networks.

作者信息

Oh Cheolhwan, Zak Stanislaw H, Zhai Guisheng

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Int J Neural Syst. 2005 Jun;15(3):181-96. doi: 10.1142/S0129065705000189.

Abstract

A class of interconnected neural networks composed of generalized Brain-State-in-a-Box (gBSB) neural subnetworks is considered. Interconnected gBSB neural network architectures are proposed along with their stability conditions. The design of the interconnected neural networks is reduced to the problem of solving linear matrix inequalities (LMIs) to determine the interconnection parameters. A method for solving LMIs is devised generating the solutions that, in general, are further away from zero than the corresponding solutions obtained using MATLAB's LMI toolbox, thus resulting in stronger interconnections between the subnetworks. The proposed architectures are then used to construct neural associative memories. Simulations are performed to illustrate the results obtained.

摘要

考虑一类由广义盒中脑状态(gBSB)神经子网组成的相互连接的神经网络。提出了相互连接的gBSB神经网络架构及其稳定性条件。将相互连接的神经网络的设计简化为求解线性矩阵不等式(LMI)以确定互连参数的问题。设计了一种求解LMI的方法,该方法生成的解通常比使用MATLAB的LMI工具箱获得的相应解离零更远,从而导致子网之间的连接更强。然后使用所提出的架构来构建神经联想记忆。进行了仿真以说明所获得的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验