Suppr超能文献

质体分裂蛋白AtMinD1是一种受AtMinE1刺激的Ca2+ -ATP酶。

The plastid division protein AtMinD1 is a Ca2+-ATPase stimulated by AtMinE1.

作者信息

Aldridge Cassie, Møller Simon Geir

机构信息

Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom.

出版信息

J Biol Chem. 2005 Sep 9;280(36):31673-8. doi: 10.1074/jbc.M505126200. Epub 2005 Jul 13.

Abstract

Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.

摘要

细菌和质体通过二分分裂进行对称分裂,即将分裂位点精确地置于中点,这一过程由FtsZ聚合引发,FtsZ聚合形成一个Z环。在大肠杆菌中,Z环在细胞中部的精确定位取决于MinD和MinE的可控振荡行为:在ATP存在的情况下,MinD与FtsZ抑制剂MinC相互作用并迁移至细胞膜,在那里MinD-MinC复合物招募MinE,随后MinD介导ATP水解并从细胞膜释放。尽管拟南质体分裂过程中Z环的正确定位取决于细菌同源物AtMinD1和AtMinE1的精确定位,但这一过程的潜在机制仍不清楚。在此我们表明AtMinD1是一种Ca2+依赖的ATP酶,通过突变分析证明了该活性的生理重要性,即ATP水解的丧失会导致蛋白质在质体内错误定位。然而,观察到的错误定位并非由于AtMinD1二聚化的破坏;活性位点AtMinD1(K72A)突变体无法与拓扑特异性因子AtMinE1相互作用。我们已经表明AtMinE1,而不是大肠杆菌的MinE,刺激AtMinD1介导的ATP水解,但与原核生物不同的是,刺激在没有膜脂的情况下发生。尽管AtMinD1在进化上似乎高度保守,但我们发现其重要的生化和细胞生物学特性已经发生了分化。我们提出,质体内AtMinD1的正确定位依赖于AtMinE1刺激的、Ca2+依赖的AtMinD1 ATP水解,最终确保Z环的精确定位和质体的对称分裂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验