Suppr超能文献

再探Gō模型:天然结构以及局部与远程接触之间的几何耦合

The Gō model revisited: Native structure and the geometric coupling between local and long-range contacts.

作者信息

Faísca Patrícia F N, Telo da Gama Margarida M, Nunes Ana

机构信息

Centro de Física Teórica e Computacional da Universidade de Lisboa, Lisboa Codex, Portugal.

出版信息

Proteins. 2005 Sep 1;60(4):712-22. doi: 10.1002/prot.20521.

Abstract

Monte Carlo simulations show that long-range interactions play a major role in determining the folding rates of 48-mer three-dimensional lattice polymers modeled by the Gō potential. For three target structures with different native geometries we found a sharp increase in the folding time when the relative contribution of the long-range interactions to the native state's energy is decreased from approximately 50% towards zero. However, the dispersion of the simulated folding times is strongly dependent on native geometry and Gō polymers folding to one of the target structures exhibits folding times spanning three orders of magnitude. We have also found that, depending on the target geometry, a strong geometric coupling may exist between local and long-range contacts, which means that, when this coupling exists, the formation of long-range contacts is forced by the previous formation of local contacts. The absence of a strong geometric coupling results in a kinetics that is more sensitive to the interaction energy parameters; in this case, the formation of local contacts is not capable of promoting the establishment of long-range ones when the latter are strongly penalized energetically and this results in longer folding times.

摘要

蒙特卡罗模拟表明,在由Gō势建模的48聚体三维晶格聚合物的折叠速率的确定中,长程相互作用起着主要作用。对于具有不同天然几何形状的三种目标结构,我们发现当长程相互作用对天然态能量的相对贡献从约50%降至零时,折叠时间急剧增加。然而,模拟折叠时间的离散度强烈依赖于天然几何形状,并且折叠成目标结构之一的Gō聚合物的折叠时间跨越三个数量级。我们还发现,根据目标几何形状,局部和长程接触之间可能存在强烈的几何耦合,这意味着当这种耦合存在时,长程接触的形成是由先前局部接触的形成所推动的。不存在强烈的几何耦合会导致动力学对相互作用能量参数更加敏感;在这种情况下,当长程接触在能量上受到强烈惩罚时,局部接触的形成无法促进长程接触的建立,这导致更长的折叠时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验