Suppr超能文献

折叠一个打结的蛋白质有多难?基于表面束缚折叠实验的计算见解。

How difficult is it to fold a knotted protein? In silico insights from surface-tethered folding experiments.

机构信息

Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal.

出版信息

PLoS One. 2012;7(12):e52343. doi: 10.1371/journal.pone.0052343. Epub 2012 Dec 20.

Abstract

We explore the effect of surface tethering on the folding process of a lattice protein that contains a trefoil knot in its native structure via Monte Carlo simulations. We show that the outcome of the tethering experiment depends critically on which terminus is used to link the protein to a chemically inert plane. In particular, if surface tethering occurs at the bead that is closer to the knotted core the folding rate becomes exceedingly slow and the protein is not able to find the native structure in all the attempted folding trajectories. Such low folding efficiency is also apparent from the analysis of the probability of knot formation, p(knot), as a function of nativeness. Indeed, p(knot) increases abruptly from ∼0 to ∼1 only when the protein has more than 80% of its native contacts formed, showing that a highly compact conformation must undergo substantial structural re-arrangement in order to get effectively knotted. When the protein is surface tethered by the bead that is placed more far away from the knotted core p(knot) is higher than in the other folding setups (including folding in the bulk), especially if conformations are highly native-like. These results show that the mobility of the terminus closest to the knotted core is critical for successful folding of trefoil proteins, which, in turn, highlights the importance of a knotting mechanism that is based on a threading movement of this terminus through a knotting loop. The results reported here predict that if this movement is blocked, knotting occurs via an alternative mechanism, the so-called spindle mechanism, which is prone to misfolding. Our simulations show that in the three considered folding setups the formation of the knot is typically a late event in the folding process. We discuss the implications of our findings for co-translational folding of knotted trefoils.

摘要

我们通过蒙特卡罗模拟研究了表面束缚对含有三叶纽结的天然结构的晶格蛋白折叠过程的影响。结果表明,束缚实验的结果严重依赖于用于将蛋白质连接到化学惰性平面的末端。特别是,如果表面束缚发生在靠近纽结核心的珠上,折叠速度会变得非常缓慢,并且在所有尝试的折叠轨迹中,蛋白质都无法找到天然结构。这种低折叠效率也可以从纽结形成概率 p(knot)作为自然度的函数的分析中看出。事实上,只有当蛋白质形成超过 80%的天然接触时,p(knot)才会从约 0 急剧增加到约 1,这表明高度紧凑的构象必须经历大量的结构重排才能有效地打结。当蛋白质通过放置在远离纽结核心的珠表面束缚时,p(knot)高于其他折叠设置(包括在本体中的折叠),尤其是当构象高度类似天然时。这些结果表明,最接近纽结核心的末端的流动性对于三叶蛋白的成功折叠至关重要,这反过来又强调了基于该末端通过纽结环的穿线运动的纽结机制的重要性。这里报告的结果预测,如果这种运动被阻断,纽结会通过所谓的纺锤机制发生,而这种机制容易导致错误折叠。我们的模拟表明,在考虑的三种折叠设置中,结的形成通常是折叠过程中的后期事件。我们讨论了我们的发现对翻译过程中纽结三叶结折叠的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b16/3527535/9fd0fcd96e47/pone.0052343.g001.jpg

相似文献

1
How difficult is it to fold a knotted protein? In silico insights from surface-tethered folding experiments.
PLoS One. 2012;7(12):e52343. doi: 10.1371/journal.pone.0052343. Epub 2012 Dec 20.
2
Effects of knots on protein folding properties.
PLoS One. 2013 Sep 4;8(9):e74755. doi: 10.1371/journal.pone.0074755. eCollection 2013.
3
Effects of knot type in the folding of topologically complex lattice proteins.
J Chem Phys. 2014 Jul 14;141(2):025101. doi: 10.1063/1.4886401.
4
The folding of knotted proteins: insights from lattice simulations.
Phys Biol. 2010 Feb 3;7(1):16009. doi: 10.1088/1478-3975/7/1/016009.
5
Mechanistic insights into the folding of knotted proteins in vitro and in vivo.
J Mol Biol. 2015 Jan 30;427(2):248-58. doi: 10.1016/j.jmb.2014.09.007. Epub 2014 Sep 16.
7
Exploring knotting mechanisms in protein folding.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18740-5. doi: 10.1073/pnas.0806697105. Epub 2008 Nov 17.
9
A Specific Set of Heterogeneous Native Interactions Yields Efficient Knotting in Protein Folding.
J Phys Chem B. 2021 Jul 15;125(27):7359-7367. doi: 10.1021/acs.jpcb.1c03127. Epub 2021 Jul 1.
10
Interplay between native topology and non-native interactions in the folding of tethered proteins.
Phys Biol. 2013 Feb;10(1):016002. doi: 10.1088/1478-3975/10/1/016002. Epub 2013 Jan 2.

引用本文的文献

1
Is There a Functional Role for the Knotted Topology in Protein UCH-L1?
J Chem Inf Model. 2024 Sep 9;64(17):6827-6837. doi: 10.1021/acs.jcim.4c00880. Epub 2024 Jul 24.
2
To Tie or Not to Tie? That Is the Question.
Polymers (Basel). 2017 Sep 16;9(9):454. doi: 10.3390/polym9090454.
4
Untangling the Influence of a Protein Knot on Folding.
Biophys J. 2016 Mar 8;110(5):1044-51. doi: 10.1016/j.bpj.2016.01.017.
5
Knotted proteins: A tangled tale of Structural Biology.
Comput Struct Biotechnol J. 2015 Aug 19;13:459-68. doi: 10.1016/j.csbj.2015.08.003. eCollection 2015.
7
Effects of knots on protein folding properties.
PLoS One. 2013 Sep 4;8(9):e74755. doi: 10.1371/journal.pone.0074755. eCollection 2013.

本文引用的文献

2
Energy landscape of knotted protein folding.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17783-8. doi: 10.1073/pnas.1201804109. Epub 2012 Aug 13.
3
The role of non-native interactions in the folding of knotted proteins.
PLoS Comput Biol. 2012;8(6):e1002504. doi: 10.1371/journal.pcbi.1002504. Epub 2012 Jun 14.
4
pKNOT v.2: the protein KNOT web server.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W228-31. doi: 10.1093/nar/gks592. Epub 2012 Jun 12.
5
Conservation of complex knotting and slipknotting patterns in proteins.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1715-23. doi: 10.1073/pnas.1205918109. Epub 2012 Jun 8.
7
Why do protein folding rates correlate with metrics of native topology?
PLoS One. 2012;7(4):e35599. doi: 10.1371/journal.pone.0035599. Epub 2012 Apr 27.
8
Coupled folding-binding in a hydrophobic/polar protein model: impact of synergistic folding and disordered flanks.
Biophys J. 2012 Feb 8;102(3):569-78. doi: 10.1016/j.bpj.2011.12.008. Epub 2012 Feb 7.
9
Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins.
Nat Chem Biol. 2011 Dec 18;8(2):147-53. doi: 10.1038/nchembio.742.
10
Protein stabilization in a highly knotted protein polymer.
Protein Eng Des Sel. 2011 Aug;24(8):627-30. doi: 10.1093/protein/gzr024. Epub 2011 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验