Karukstis K K, Moision R M, Johansen S K, Birkeland K E, Cohen S M
Department of Chemistry, Harvey Mudd College, Claremont, CA 91711.
Photochem Photobiol. 1992 Jan;55(1):125-32. doi: 10.1111/j.1751-1097.1992.tb04218.x.
We have previously used chlorophyll fluorescence measurements at Fmax conditions (i.e. with Photosystem II electron acceptor QA reduced) to monitor the action of 9,10-anthraquinones on photosynthetic electron transport in plant chloroplasts. The present investigation employs two additional techniques to characterize the extent of electron transport inhibition induced by the addition of substituted anthraquinones to the suspending medium of spinach chloroplasts. Results are presented for spectrophotometric assays of the rate of electron transfer to an exogenous electron acceptor, 2,6-dichloroindophenol (DCIP) and for electrochemical determinations of the rate of oxygen evolution in anthraquinone-treated chloroplasts. In general, amino-substituted anthraquinones are ineffective inhibitors, maintaining electron transfer rates to DCIP at levels ranging from 50 to 90% of normal rates and yielding rates of O2 evolution averaging at 70% of the rate in untreated chloroplasts. In contrast, hydroxy-substituted anthraquinones efficiently block Photosystem II electron transport, resulting in low rates of DCIP photoreduction ranging from 0 to 20% of normal values and reducing O2 evolution rates to an average of 30% of the rate observed for untreated chloroplasts. Relative rates of DCIP photoreduction for anthraquinone-treated chloroplasts show a strong linear correlation with the reported relative Fmax chlorophyll fluorescence intensities. Relative O2 evolution rates are observed to correlate with the Stern-Volmer fluorescence quenching parameter Ksv. We suggest that slight differences in the extent of inhibitory activity of an anthraquinone as measured by the three techniques are consistent with certain known Photosystem II heterogeneities. The similarities in relative rankings of inhibitory effects for the 9, 10-anthraquinones, however, demonstrate that the three techniques employed (measurements of Fmax chlorophyll fluorescence, DCIP photoreduction rates, and O2 evolution rates) are alternative assays of anthraquinone-induced Photosystem II electron transport inhibition.
我们之前曾在最大荧光(Fmax)条件下(即光系统II电子受体QA处于还原状态)利用叶绿素荧光测量来监测9,10-蒽醌对植物叶绿体光合电子传递的作用。本研究采用了另外两种技术来表征在菠菜叶绿体悬浮介质中添加取代蒽醌所诱导的电子传递抑制程度。文中给出了分光光度法测定向外源电子受体2,6-二氯靛酚(DCIP)的电子传递速率以及电化学测定蒽醌处理的叶绿体中氧气释放速率的结果。一般来说,氨基取代的蒽醌是无效抑制剂,将向DCIP的电子传递速率维持在正常速率的50%至90%,并且氧气释放速率平均为未处理叶绿体中速率的70%。相比之下,羟基取代的蒽醌能有效阻断光系统II的电子传递,导致DCIP光还原速率很低,仅为正常值的0%至20%,并将氧气释放速率降低至未处理叶绿体中观察到速率的平均30%。蒽醌处理的叶绿体的DCIP光还原相对速率与报道的相对最大叶绿素荧光强度呈现出很强的线性相关性。观察到相对氧气释放速率与斯特恩-沃尔默荧光猝灭参数Ksv相关。我们认为,通过这三种技术测量的蒽醌抑制活性程度的细微差异与某些已知的光系统II异质性是一致的。然而,9,10-蒽醌抑制作用相对排名的相似性表明,所采用的三种技术(最大叶绿素荧光测量、DCIP光还原速率和氧气释放速率测量)是蒽醌诱导的光系统II电子传递抑制的替代测定方法。