Suppr超能文献

类别学习中的眼动追踪与选择性注意

Eyetracking and selective attention in category learning.

作者信息

Rehder Bob, Hoffman Aaron B

机构信息

Department of Psychology, 6 Washington Place, New York University, New York, NY 10003, USA.

出版信息

Cogn Psychol. 2005 Aug;51(1):1-41. doi: 10.1016/j.cogpsych.2004.11.001. Epub 2005 Mar 19.

Abstract

An eyetracking version of the classic Shepard, Hovland, and Jenkins (1961) experiment was conducted. Forty years of research has assumed that category learning often involves learning to selectively attend to only those stimulus dimensions useful for classification. We confirmed that participants learned to allocate their attention optimally. We also found that learners tend to fixate all stimulus dimensions early in learning. This result obtained despite evidence that participants were also testing one-dimensional rules during this period. Finally, the restriction of eye movements to only relevant dimensions tended to occur only after errors were largely (or completely) eliminated. We interpret these findings as consistent with multiple-systems theories of learning which maximize information input in order to maximize the number of learning modules involved, and which focus solely on relevant information only after one module has solved the learning problem.

摘要

我们进行了经典的谢泼德、霍夫兰德和詹金斯(1961年)实验的眼动追踪版本。四十年来的研究一直认为,类别学习通常涉及学会选择性地只关注那些对分类有用的刺激维度。我们证实了参与者学会了最优地分配他们的注意力。我们还发现,学习者在学习初期倾向于注视所有的刺激维度。尽管有证据表明参与者在此期间也在测试一维规则,但仍得到了这一结果。最后,眼动仅限制在相关维度上的情况往往只在错误被大量(或完全)消除之后才会出现。我们将这些发现解释为与学习的多系统理论一致,该理论为了使涉及的学习模块数量最大化而最大化信息输入,并且只有在一个模块解决了学习问题之后才只关注相关信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验