Bogdawa Heique, Delessert Syndie, Poirier Yves
Département de Biologie Moléculaire Végétale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
Biochim Biophys Acta. 2005 Aug 15;1735(3):204-13. doi: 10.1016/j.bbalip.2005.06.003.
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
通过监测过氧化物酶体中聚羟基脂肪酸酯的产生,在酿酒酵母体内分析了共轭亚油酸9-顺式,11-反式-十八碳二烯酸(瘤胃酸)的β-氧化。聚羟基脂肪酸酯是通过靶向过氧化物酶体的细菌聚羟基脂肪酸酯合酶,由β-氧化中间体3-羟基酰基辅酶A聚合而成。发现由瘤胃酸降解合成的聚羟基脂肪酸酯的量与由10-反式,12-顺式-十八碳二烯酸、油酸或10-顺式-十七碳烯酸降解合成的量相似。此外,发现10-顺式-十七碳烯酸的降解不受培养基中瘤胃酸存在的影响。发现瘤胃酸的有效降解不依赖于Δ(3,5),Δ(2,4)-二烯酰辅酶A异构酶,而是依赖于Δ(3),Δ(2)-烯酰辅酶A异构酶活性的存在。在源自瘤胃酸降解的聚羟基脂肪酸酯中不饱和单体3-羟基十二碳烯酸的存在被发现依赖于Δ(3),Δ(2)-烯酰辅酶A异构酶活性的存在。总之,这些数据表明,在酿酒酵母体内,瘤胃酸主要通过一条仅需辅助酶Δ(3),Δ(2)-烯酰辅酶A异构酶以及核心β-氧化循环酶参与的途径进行降解。