Merritt W Keither, Nechev Lubomir V, Scholdberg Tandace A, Dean Stephen M, Kiehna Sarah E, Chang Johanna C, Harris Thomas M, Harris Constance M, Lloyd R Stephen, Stone Michael P
Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA.
Biochemistry. 2005 Aug 2;44(30):10081-92. doi: 10.1021/bi047263g.
The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580].
在寡脱氧核苷酸5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'中,确定了由丁二烯二氧化物(BDO₂)对相邻腺嘌呤的N⁶-dA烷基化产生的1,4-双(2'-脱氧腺苷-N⁶-基)-2R,3R-丁二醇交联的溶液结构。该寡脱氧核苷酸包含人N-ras原癌基因的第61位密码子(下划线)。交联位于双链DNA的大沟中。在交联的5'侧,碱基对X(6).T(17)处的沃森-克里克碱基配对出现断裂,而在交联的3'侧,碱基对Y(7).T(16)处的碱基配对保持完整。使用模拟退火协议进行分子动力学计算,并受到从¹H NOESY数据获得的338个质子间距离约束和从¹H和³¹P COSY数据获得的151个扭转角约束的组合约束,产生了具有良好收敛性的结构集合。螺旋分析表明,碱基对X(6).T(17)处的碱基对开口增加,同时核苷酸X(6)处的磷酸二酯主链扭转角β P5'-O'5-C5'-C4'发生位移。rMD计算预测,四碳交联的存在不会使DNA螺旋显著弯曲。含有非羟基化四碳N⁶,N⁶-dA交联的多聚体的凝胶迁移率测定证实了这一点,该测定未预测到DNA弯曲。rMD计算表明,四碳交联的β-碳上的羟基与T(17) O(4)之间存在氢键,这可能稳定了X(6).T(17)处的碱基对开口,并保护T(17)亚氨基质子不与溶剂交换。碱基对X(6).T(17)的开口改变了交联位点处的碱基堆积模式,并导致DNA双链轻微解旋。根据生化数据对结构数据进行了解释,表明这种交联被多种DNA聚合酶绕过,但具有显著的致突变性[卡努里,M.,内切夫,L. V.,田村,P. J.,哈里斯,C. M.,哈里斯,T. M.,和劳埃德,R. S.(2002年)《化学研究毒理学》15,1572 - 1580]。