Mitra Rajib K, Paul Bidyut K
Geological Studies Unit, Indian Statistical institute, 203 B.T. Road, Kolkata 700108, India.
J Colloid Interface Sci. 2005 Nov 15;291(2):550-9. doi: 10.1016/j.jcis.2005.05.048. Epub 2005 Jul 25.
The phase behavior of Brij-56/1-butanol/n-heptane/water is investigated at 30 degrees C with alpha [weight fraction of oil in (oil+water)]=0.5, wherein a 2-->3-->2 phase transition occurs with increasing W1 (weight fraction of 1-butanol in total amphiphile) at low X (weight fraction of both the amphiphiles in the mixture) and a 2-->1-->2 phase transition occurs at higher X. Addition of an ionic surfactant, sodium dodecylbenzene sulfonate, destroys the three-phase body and decreases the solubilization capacity of the system at different delta (weight fraction of ionic surfactant in total surfactant). A three-phase body appears at alpha=0.25, but not at alpha=0.75 for the single system. No three-phase body appears with the mixed system at either alpha value. Increased temperature increases the solubilization capacity of the Brij-56 system; on the other hand, a negligible effect of temperature on the Brij-56/SDBS mixed system has been observed. Addition of salt (NaCl) produces a three-phase body for both single and mixed systems and increases their solubilization capacities. The monomeric solubility of 1-butanol in oil (S1) and at the interface (S1s) has been calculated using the equation hydrophile-lipophile balance plane for both singles- and mixed-surfactant systems. These parameters have been utilized to explain the increase in solubilization capacity of these systems in the presence of NaCl.