Su Bin, Eugster Nicolas, Girault Hubert H
Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
J Am Chem Soc. 2005 Aug 3;127(30):10760-6. doi: 10.1021/ja052415w.
Hexanethiolate monolayer-protected gold nanoclusters (MPCs) were used as redox quenchers at the polarizable water/1,2-dichloroethane (DCE) interface. Photocurrent responses originating from the heterogeneous quenching of photoexcited water soluble porphyrin complexes by MPCs dissolved in the DCE phase were observed. As MPCs can function as both electron acceptors and donors, the photocurrent results from the superposition of two simultaneous processes, which correspond to the oxidation and reduction of MPCs. The magnitude of the net photocurrent is essentially determined by the balance of the kinetics of these two processes, which can be controlled by tuning the Galvani potential difference between the two phases. We show that, within the available potential window, the apparent electron-transfer rate constants follow classical Butler-Volmer dependence on the applied potential difference.
己硫醇单层保护的金纳米团簇(MPCs)在可极化的水/1,2-二氯乙烷(DCE)界面用作氧化还原猝灭剂。观察到源自溶解在DCE相中的MPCs对光激发水溶性卟啉配合物的非均相猝灭产生的光电流响应。由于MPCs既可以作为电子受体又可以作为供体,光电流来自两个同时发生的过程的叠加,这两个过程分别对应于MPCs的氧化和还原。净光电流的大小基本上由这两个过程的动力学平衡决定,这可以通过调节两相之间的伽伐尼电位差来控制。我们表明,在可用的电位窗口内,表观电子转移速率常数遵循经典的Butler-Volmer对施加电位差的依赖性。