Choi Jin-Sung, Soderlund David M
Department of Entomology, New York State Agricultural Experiment Station, Cornell University, P. O. Box 462, Geneva, NY 14456, USA.
Toxicol Appl Pharmacol. 2006 Mar 15;211(3):233-44. doi: 10.1016/j.taap.2005.06.022. Epub 2005 Jul 26.
Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1.8 sodium channels from the perspective of either resting or use-dependent modification. When use dependence is taken into account, cypermethrin, deltamethrin and tefluthrin approached the effectiveness of fenpropathrin. The selective expression of Na v 1.8 sodium channels in nociceptive neurons suggests that these channels may be important targets for pyrethroids in the production of paresthesia following dermal exposure.
拟除虫菊酯类杀虫剂与电压敏感性钠通道结合并改变其门控动力学,从而破坏神经功能。本文描述了11种结构各异的市售拟除虫菊酯类杀虫剂对大鼠Nav1.8钠通道亚型的作用,该亚型是感觉神经元中对河豚毒素耐受、对拟除虫菊酯敏感的钠电流的主要载体,在非洲爪蟾卵母细胞中表达。所有11种化合物在去极化脉冲后均产生特征性的钠尾电流,其范围从快速衰减的单指数电流(丙烯菊酯、顺式氯菊酯和氯菊酯)到持续的双指数电流(氟氯氰菊酯、氯氟氰菊酯、氯氰菊酯和溴氰菊酯)。其余化合物(联苯菊酯、甲氰菊酯、氰戊菊酯和七氟菊酯)的尾电流为单指数,其衰减动力学介于这两种极端情况之间。仅由拟除虫菊酯修饰的通道亚群所携带电流的重构揭示了两种类型的拟除虫菊酯修饰电流。第一种类型,见于顺式氯菊酯、丙烯菊酯、氯菊酯和七氟菊酯,激活相对较快,在40毫秒去极化期间部分失活。第二种类型,见于氯氰菊酯、氟氯氰菊酯、氯氟氰菊酯、溴氰菊酯、甲氰菊酯和氰戊菊酯,激活较慢,在40毫秒去极化期间未检测到失活。只有联苯菊酯产生的修饰电流不属于这两种明显的类别。在所有情况下,修饰通道的激活速率与复极化后尾电流的衰减速率密切相关。氟氯氰菊酯、氯氟氰菊酯、氯氰菊酯和溴氰菊酯对Nav1.8钠通道的修饰作用在重复刺激下增强了2.3至3.4倍;这种效应似乎是由于持续开放通道的积累,而不是优先结合到开放通道状态。从静息或使用依赖性修饰的角度来看,甲氰菊酯是对抗Nav1.8钠通道最有效的化合物。考虑到使用依赖性,氯氰菊酯、溴氰菊酯和七氟菊酯接近甲氰菊酯的有效性。Nav1.8钠通道在伤害性神经元中的选择性表达表明,这些通道可能是拟除虫菊酯在皮肤接触后产生感觉异常过程中的重要靶点。