Qiu Li Yan, Krieger Elmar, Schaftenaar Gijs, Swarts Herman G P, Willems Peter H G M, De Pont Jan Joep H H M, Koenderink Jan B
Department of Biochemistry (160), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, The Netherlands.
J Biol Chem. 2005 Sep 16;280(37):32349-55. doi: 10.1074/jbc.M505168200. Epub 2005 Jul 28.
Although cardiac glycosides have been used as drugs for more than 2 centuries and their primary target, the sodium pump (Na,K-ATPase), has already been known for 4 decades, their exact binding site is still elusive. In our efforts to define the molecular basis of digitalis glycosides binding we started from the fact that a closely related enzyme, the gastric H,K-ATPase, does not bind glycosides like ouabain. Previously, we showed that a chimera of these two enzymes, in which only the M3-M4 and M5-M6 hairpins were of Na,K-ATPase, bound ouabain with high affinity (Koenderink, J. B., Hermsen, H. P. H., Swarts, H. G. P., Willems, P. H. G. M., and De Pont, J. J. H. H. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11209-11214). We also demonstrated that only three amino acids (Phe(783), Thr(797), and Asp(804)) present in the M5-M6 hairpin of Na,K-ATPase were sufficient to confer high affinity ouabain binding to a chimera which contained in addition the M3-M4 hairpin of Na,K-ATPase (Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H., and De Pont, J. J. H. H. M. (2003) J. Biol. Chem. 278, 47240-47244). To further pinpoint the ouabain-binding site here we used a chimera-based loss-of-function strategy and identified four amino acids (Glu(312), Val(314), Ile(315), Gly(319)), all present in M4, as being important for ouabain binding. In a final gain-of-function study we showed that a gastric H,K-ATPase that contained Glu(312), Val(314), Ile(315), Gly(319), Phe(783), Thr(797), and Asp(804) of Na,K-ATPase bound ouabain with the same affinity as the native enzyme. Based on the E(2)P crystal structure of Ca(2+)-ATPase we constructed a homology model for the ouabain-binding site of Na,K-ATPase involving all seven amino acids as well as several earlier postulated amino acids.
尽管强心苷作为药物已使用了两个多世纪,其主要靶点钠泵(Na,K - ATP酶)也已被发现40年了,但其确切的结合位点仍不清楚。在我们试图确定洋地黄苷结合的分子基础的过程中,我们从这样一个事实出发:一种密切相关的酶,即胃H,K - ATP酶,不结合哇巴因这样的苷类。此前,我们表明这两种酶的一种嵌合体,其中只有M3 - M4和M5 - M6发夹结构来自钠泵,能以高亲和力结合哇巴因(Koenderink, J. B., Hermsen, H. P. H., Swarts, H. G. P., Willems, P. H. G. M., and De Pont, J. J. H. H. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11209 - 11214)。我们还证明,钠泵M5 - M6发夹结构中仅有的三个氨基酸(Phe(783)、Thr(797)和Asp(804))就足以使含有钠泵M3 - M4发夹结构的嵌合体具有高亲和力的哇巴因结合能力(Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H., and De Pont, J. J. H. H. M. (2003) J. Biol. Chem. 278, 47240 - 47244)。为了进一步精确确定这里的哇巴因结合位点,我们采用了基于嵌合体的功能丧失策略,并确定了M4中所有存在的四个氨基酸(Glu(312)、Val(314)、Ile(315)、Gly(319))对哇巴因结合很重要。在最后的功能获得性研究中,我们表明一种含有钠泵的Glu(312)、Val(314)、Ile(315)、Gly(319)、Phe(783)、Thr(797)和Asp(804)的胃H,K - ATP酶能以与天然酶相同的亲和力结合哇巴因。基于Ca(2 +)-ATP酶的E(2)P晶体结构,我们构建了一个钠泵哇巴因结合位点的同源模型,该模型涉及所有七个氨基酸以及几个先前假定的氨基酸。