Suppr超能文献

血清蛋白质组指纹图谱可区分黑色素瘤患者的临床分期并预测疾病进展。

Serum proteomic fingerprinting discriminates between clinical stages and predicts disease progression in melanoma patients.

作者信息

Mian Shahid, Ugurel Selma, Parkinson Erika, Schlenzka Iris, Dryden Ian, Lancashire Lee, Ball Graham, Creaser Colin, Rees Robert, Schadendorf Dirk

机构信息

Interdisciplinary Biomedical Research Centre, School of Science, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK.

出版信息

J Clin Oncol. 2005 Aug 1;23(22):5088-93. doi: 10.1200/JCO.2005.03.164.

Abstract

PURPOSE

Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-beta is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression.

PATIENTS AND METHODS

Two hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-beta was measured using a sandwich immunoluminometric assay.

RESULTS

Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-beta.

CONCLUSION

Validation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.

摘要

目的

目前已知的血清生物标志物无法预测黑色素瘤的临床结局。S100-β在晚期转移性疾病患者中被广泛确立为可靠的预后指标,但在无肿瘤患者中的预测价值有限。本研究旨在确定血清蛋白质组的分子谱分析能否区分早期和晚期黑色素瘤,并预测疾病进展。

患者与方法

采用蛋白质芯片技术和人工神经网络(ANN),通过基质辅助激光解吸/电离(MALDI)飞行时间(ToF;MALDI-ToF)质谱法对101例早期(美国癌症联合委员会[AJCC]I期)和104例晚期(AJCC IV期)黑色素瘤患者的205份血清样本进行分析。对另外55例区域淋巴结转移完全切除术后(AJCC III期)患者的血清样本进行分析,其中55例患者中有28例在随访的第一年内复发,试图预测疾病复发。采用夹心免疫发光分析法检测血清S100-β。

结果

对205份I/IV期血清样本进行分析,将205份样本中的94份作为训练集,15份作为测试集,用于32种不同的ANN模型,在205份血清样本的96份盲测集中,有84份(88%)的分期被正确判定。使用随机样本交叉验证统计方法,55份III期血清样本中有44份(80%)可被正确判定为进展者或非进展者。通过MALDI-ToF结合ANN正确识别出28例III期进展者中的23例(82%),而S100-β仅能检测出28例中的6例(21%)。

结论

这些研究结果的验证可能使蛋白质组分析成为识别适合辅助治疗干预的高危黑色素瘤患者的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验