Suppr超能文献

宫颈癌患者辅助治疗期间化疗引起的中性粒细胞减少症:预测模型的建立与验证

Chemotherapy-induced neutropenia during adjuvant treatment for cervical cancer patients: development and validation of a prediction model.

作者信息

Huang Kecheng, Luo Aiyue, Li Xiong, Li Shuang, Wang Shixuan

机构信息

Department of Gynecology & Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China.

出版信息

Int J Clin Exp Med. 2015 Jul 15;8(7):10835-44. eCollection 2015.

Abstract

UNLABELLED

An artificial neuron network (ANN) model combining both the genetic risk factors and clinical factorsmay be effective in prediction of chemotherapy-induced adverse events.

PURPOSE

To identify genetic factors and clinical factors associated with bone marrow suppression in cervical cancer patient, and to build a model for chemotherapy-induced neutropenia prediction.

METHODS

We performed a genome wide association study on a cohort to identify genetic determinants. Samples were genotyped using the Axiom CHB 1.0. The primary analyses focused on the scan of 657178 single-nucleotide polymorphisms (SNPs). Artificial neural network were used to integrating clinical factors and genetic factors to predict the occurrence of neutropenia.

RESULTS

32 variants associated with neutropenia in the patients after chemotherapy were found (P<1 × 10(-4)). During internal validation and external validation, artificial neural network performed well in predicting neutropenia with considerable accuracy, which is 88.9% and 81.7% respectively. ROC analysis had acceptable areas under the curve of 0.897 for the internal validation sample and 0.782 for the external validation sample.

CONCLUSION

Neutropenia may be associated with both genetic factors and clinical factors. Our study found that the artificial neural networks model based on the multiple risk factors jointly, can effectively predict the occurring of neutropenia, which provides some guidance before the starting of chemotherapy.

摘要

未标注

结合遗传风险因素和临床因素的人工神经网络(ANN)模型可能在预测化疗引起的不良事件方面有效。

目的

识别宫颈癌患者中与骨髓抑制相关的遗传因素和临床因素,并建立化疗引起的中性粒细胞减少症预测模型。

方法

我们对一个队列进行了全基因组关联研究以识别遗传决定因素。使用Axiom CHB 1.0对样本进行基因分型。主要分析集中在对657178个单核苷酸多态性(SNP)的扫描。使用人工神经网络整合临床因素和遗传因素来预测中性粒细胞减少症的发生。

结果

发现32个与化疗后患者中性粒细胞减少症相关的变异(P<1×10⁻⁴)。在内部验证和外部验证期间,人工神经网络在预测中性粒细胞减少症方面表现良好,准确率分别为88.9%和81.7%。内部验证样本的ROC分析曲线下面积为0.897,外部验证样本为0.782,均可接受。

结论

中性粒细胞减少症可能与遗传因素和临床因素均有关。我们的研究发现,基于多种风险因素联合的人工神经网络模型可以有效预测中性粒细胞减少症的发生,这在化疗开始前提供了一些指导。

相似文献

3
Chemotherapy-induced anaemia during adjuvant treatment for breast cancer: development of a prediction model.
Lancet Oncol. 2005 Nov;6(11):856-63. doi: 10.1016/S1470-2045(05)70394-6.
6
Disease-free survival assessment by artificial neural networks for hepatocellular carcinoma patients after radiofrequency ablation.
J Formos Med Assoc. 2017 Oct;116(10):765-773. doi: 10.1016/j.jfma.2016.12.006. Epub 2017 Jan 20.
7
A prospectively validated nomogram for predicting the risk of chemotherapy-induced febrile neutropenia: a multicenter study.
Support Care Cancer. 2015 Jun;23(6):1759-67. doi: 10.1007/s00520-014-2531-6. Epub 2014 Nov 30.
9
Development of a simplified multivariable model to predict neutropenic complications in cancer patients undergoing chemotherapy.
Support Care Cancer. 2018 Nov;26(11):3691-3699. doi: 10.1007/s00520-018-4224-z. Epub 2018 May 7.
10
Clinical validation of genetic variants associated with chemotherapy-related lymphoblastoid cell toxicity.
Oncotarget. 2017 May 9;8(44):78133-78143. doi: 10.18632/oncotarget.17726. eCollection 2017 Sep 29.

本文引用的文献

3
Global cancer statistics, 2012.
CA Cancer J Clin. 2015 Mar;65(2):87-108. doi: 10.3322/caac.21262. Epub 2015 Feb 4.
4
Prediction of regulation relationship between protein interactions in signaling networks.
Biochem Biophys Res Commun. 2013 Oct 25;440(3):388-92. doi: 10.1016/j.bbrc.2013.09.093. Epub 2013 Oct 1.
6
The value of genetic polymorphisms to predict toxicity in metastatic colorectal patients with irinotecan-based regimens.
Cancer Chemother Pharmacol. 2012 Jun;69(6):1591-9. doi: 10.1007/s00280-012-1866-2. Epub 2012 Apr 26.
7
Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine.
Cancer Chemother Pharmacol. 2012 Jan;69(1):25-33. doi: 10.1007/s00280-011-1670-4. Epub 2011 May 18.
8
Global cancer statistics.
CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. doi: 10.3322/caac.20107. Epub 2011 Feb 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验