Suppr超能文献

随访数据中重复转移的联合建模——以乳腺癌数据为例的研究

Joint modelling of repeated transitions in follow-up data--a case study on breast cancer data.

作者信息

Genser B, Wernecke K D

机构信息

Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.

出版信息

Biom J. 2005 Jun;47(3):388-401. doi: 10.1002/bimj.200410126.

Abstract

In longitudinal studies where time to a final event is the ultimate outcome often information is available about intermediate events the individuals may experience during the observation period. Even though many extensions of the Cox proportional hazards model have been proposed to model such multivariate time-to-event data these approaches are still very rarely applied to real datasets. The aim of this paper is to illustrate the application of extended Cox models for multiple time-to-event data and to show their implementation in popular statistical software packages. We demonstrate a systematic way of jointly modelling similar or repeated transitions in follow-up data by analysing an event-history dataset consisting of 270 breast cancer patients, that were followed-up for different clinical events during treatment in metastatic disease. First, we show how this methodology can also be applied to non Markovian stochastic processes by representing these processes as "conditional" Markov processes. Secondly, we compare the application of different Cox-related approaches to the breast cancer data by varying their key model components (i.e. analysis time scale, risk set and baseline hazard function). Our study showed that extended Cox models are a powerful tool for analysing complex event history datasets since the approach can address many dynamic data features such as multiple time scales, dynamic risk sets, time-varying covariates, transition by covariate interactions, autoregressive dependence or intra-subject correlation.

摘要

在纵向研究中,最终事件发生时间是最终结局,通常可以获得个体在观察期内可能经历的中间事件的信息。尽管已经提出了许多Cox比例风险模型的扩展方法来对这种多变量事件发生时间数据进行建模,但这些方法在实际数据集中仍然很少应用。本文的目的是说明扩展Cox模型在多变量事件发生时间数据中的应用,并展示它们在流行统计软件包中的实现。我们通过分析一个由270名乳腺癌患者组成的事件史数据集,展示了一种对随访数据中相似或重复转变进行联合建模的系统方法,这些患者在转移性疾病治疗期间接受了不同临床事件的随访。首先,我们展示了如何通过将这些过程表示为“条件”马尔可夫过程,将该方法应用于非马尔可夫随机过程。其次,我们通过改变不同Cox相关方法的关键模型组件(即分析时间尺度、风险集和基线风险函数),比较它们在乳腺癌数据中的应用。我们的研究表明,扩展Cox模型是分析复杂事件史数据集的有力工具,因为该方法可以处理许多动态数据特征,如多个时间尺度、动态风险集、时变协变量、协变量交互作用导致的转变、自回归依赖性或个体内相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验