Suppr超能文献

用于制药和工业应用的人工非抗体结合蛋白。

Artificial, non-antibody binding proteins for pharmaceutical and industrial applications.

作者信息

Hey Thomas, Fiedler Erik, Rudolph Rainer, Fiedler Markus

机构信息

Scil Proteins GmbH, Heinrich-Damerow-Str.1, 06120 Halle/Saale, Germany.

出版信息

Trends Biotechnol. 2005 Oct;23(10):514-22. doi: 10.1016/j.tibtech.2005.07.007.

Abstract

Using combinatorial chemistry to generate novel binding molecules based on protein frameworks ('scaffolds') is a concept that has been strongly promoted during the past five years in both academia and industry. Non-antibody recognition proteins derive from different structural families and mimic the binding principle of immunoglobulins to varying degrees. In addition to the specific binding of a pre-defined target, these proteins provide favourable characteristics such as robustness, ease of modification and cost-efficient production. The broad spectrum of potential applications, including research tools, separomics, diagnostics and therapy, has led to the commercial exploitation of this technology by various small- and medium-sized companies. It is predicted that scaffold-based affinity reagents will broaden and complement applications that are presently covered by natural or recombinant antibodies. Here, we provide an overview on current approaches in the biotech industry, considering both scientific and commercial aspects.

摘要

利用组合化学基于蛋白质框架(“支架”)生成新型结合分子是一个在过去五年中在学术界和工业界都得到大力推广的概念。非抗体识别蛋白源自不同的结构家族,并在不同程度上模拟免疫球蛋白的结合原理。除了对预定义靶标的特异性结合外,这些蛋白还具有诸如稳定性、易于修饰和生产成本效益高等有利特性。包括研究工具、蛋白质组学分离、诊断和治疗在内的广泛潜在应用,已促使多家中小型公司对该技术进行商业开发。预计基于支架的亲和试剂将拓宽并补充目前由天然或重组抗体涵盖的应用。在此,我们从科学和商业两个方面对生物技术行业的当前方法进行概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验