Yannopoulos Demetris, Nadkarni Vinay M, McKnite Scott H, Rao Anu, Kruger Kurt, Metzger Anja, Benditt David G, Lurie Keith G
Department of Cardiology, Cardiac Arrhythmia Center, University of Minnesota, Minneapolis, MN, USA.
Circulation. 2005 Aug 9;112(6):803-11. doi: 10.1161/CIRCULATIONAHA.105.541508. Epub 2005 Aug 1.
A novel device, the intrathoracic pressure regulator (ITPR), combines an inspiratory impedance threshold device (ITD) with a vacuum source for the generation of controlled -10 mm Hg vacuum in the trachea during cardiopulmonary resuscitation (CPR) while allowing positive pressure ventilation. Compared with standard (STD) CPR, ITPR-CPR will enhance venous return, systemic arterial pressure, and vital organ perfusion in both porcine models of ventricular fibrillation and hypovolemic cardiac arrest.
In protocol 1, 20 pigs (weight, 30+/-0.5 kg) were randomized to STD-CPR or ITPR-CPR. After 8 minutes of untreated ventricular fibrillation, CPR was performed for 6 minutes at 100 compressions per minute and positive pressure ventilation (100% O2) with a compression-to-ventilation ratio of 15:2. In protocol 2, 6 animals were bled 50% of their blood volume. After 4 minutes of untreated ventricular fibrillation, interventions were performed for 2 minutes with STD-CPR and 2 minutes of ITPR-CPR. This sequence was repeated. In protocol 3, 6 animals after 8 minutes of untreated VF were treated with ITPR-CPR for 15 minutes, and arterial and venous blood gases were collected at baseline and minutes 5, 10, and 15 of CPR. A newer, leak-proof ITPR device was used. Aortic, right atrial, endotracheal pressure, intracranial pressure, and end-tidal CO2 values were measured (mm Hg); common carotid arterial flow also was measured (mL/min). Coronary perfusion pressure (diastolic; aortic minus right atrial pressure) and cerebral perfusion pressure (mean arterial minus mean intracranial pressure) were calculated. Unpaired Student t test and Friedman's repeated-measures ANOVA of ranks were used in protocols 1 and 3. A 2-tailed Wilcoxon signed-rank test was used for analysis in protocol 2. Fischer's exact test was used for survival. Significance was set at P<0.05. Vital organ perfusion pressures and end-tidal CO2 were significantly improved with ITPR-CPR in both protocols. In protocol 1, 1-hour survival was 100% with ITPR-CPR and 10% with STD-CPR (P=0.001). Arterial blood pH was significantly lower and Paco2 was significantly higher with ITPR-CPR in protocol 1. Arterial oxygen saturation was 100% throughout the study in both protocols. Paco2 and Pao2 remained stable, but metabolic acidosis progressed, as expected, throughout the 15 minutes of CPR in protocol 3.
Compared with STD-CPR, use of ITPR-CPR improved hemodynamics and short-term survival rates after cardiac arrest.
一种新型装置,即胸内压力调节器(ITPR),将吸气阻抗阈值装置(ITD)与真空源相结合,以便在心肺复苏(CPR)期间在气管中产生可控的 -10 mmHg 真空,同时允许进行正压通气。与标准(STD)心肺复苏相比,ITPR-CPR 将增强心室颤动和低血容量性心脏骤停猪模型中的静脉回流、体循环动脉压和重要器官灌注。
在方案1中,20头猪(体重30±0.5 kg)被随机分为STD-CPR组或ITPR-CPR组。在未经治疗的心室颤动8分钟后,以每分钟100次按压和正压通气(100%氧气)进行6分钟的心肺复苏,按压与通气比例为15:2。在方案2中,6只动物放血至血容量的50%。在未经治疗的心室颤动4分钟后,先进行2分钟的STD-CPR干预,再进行2分钟的ITPR-CPR干预。此序列重复进行。在方案3中,6只动物在未经治疗的室颤8分钟后接受15分钟的ITPR-CPR治疗,并在心肺复苏的基线、第5、10和15分钟采集动脉和静脉血气。使用了一种更新的、防漏的ITPR装置。测量主动脉、右心房、气管内压力、颅内压和呼气末二氧化碳值(mmHg);还测量颈总动脉血流量(mL/min)。计算冠状动脉灌注压(舒张压;主动脉减去右心房压力)和脑灌注压(平均动脉压减去平均颅内压)。方案1和3中使用未配对的学生t检验和弗里德曼重复测量秩方差分析。方案2中使用双尾威尔科克森符号秩检验进行分析。使用费舍尔精确检验分析生存率。显著性设定为P<0.05。在两个方案中,ITPR-CPR均显著改善了重要器官灌注压和呼气末二氧化碳。在方案1中,ITPR-CPR的1小时生存率为100%,STD-CPR为10%(P=0.001)。方案1中,ITPR-CPR时动脉血pH值显著降低,动脉血二氧化碳分压显著升高。在两个方案的整个研究过程中,动脉血氧饱和度均为100%。在方案3中,在整个15分钟的心肺复苏过程中,动脉血二氧化碳分压和动脉血氧分压保持稳定,但代谢性酸中毒如预期进展。
与STD-CPR相比,使用ITPR-CPR可改善心脏骤停后的血流动力学和短期生存率。